

Pygorithm

Introduction

Pygorithm: A fun way to learn algorithms on the go! Just import the module and start learning, it’s that easy.

A Python module written in pure python and for purely educational purposes.
Get the code, time complexities and much more by just importing the required algorithm. A good way to start
learning Python programming. Learn implementation of all major algorithms in Python.
No need to surf the internet to get the required code. Just install this module and get going.

Quick Links

	Source Code [https://github.com/OmkarPathak/pygorithm]

	Documentation [http://pygorithm.readthedocs.io/en/latest/]

Documentation:

	Binary Conversions
	Features

	ASCII Conversions

	Base2 Coversions

	Base10 Coversions

	Base16 Coversions

	Data Structures
	Quick Start Guide

	Features

	Stack

	Queue

	Linked Lists

	Tree

	Graph

	Heap

	Trie

	QuadTree

	Dynamic Programming
	Features

	Binary (0/1) Knapsack

	Longest Increasing Subsequence

	Fibonacci
	Quick Start Guide

	Features

	Implementations API

	Geometry
	Quick Start Guide

	Features

	Vector2

	Line2

	Axis-Aligned Line

	Concave Polygon

	Axis-Aligned Rectangle

	Extrapolated Intersection

	Greedy Algorithms
	Features

	Activity Selection Problem

	Fractional Knapsack

	Math
	Quick Start Guide

	Features

	LCM

	Sieve of Eratostenes

	Factorial

	Conversion

	Path Finding Algorithms
	Quick Start Guide

	Features

	Dijkstra

	Unidirectional AStar

	BiDirectional AStar

	Searching
	Quick Start Guide

	Features

	Binary Search

	Linear Search

	Breadth First Search

	Depth First Search

	Quick Select Search

	Interpolation Search

	Sorting
	Quick Start Guide

	Features

	Bubble Sort

	Bucket Sort

	Counting Sort

	Heap Sort

	Insertion Sort

	Merge Sort

	Quick Sort

	Selection Sort

	Shell Sort

	Strings
	Features

	Anagram

	Isogram

	Palindrome

	Pangram

	Manacher’s Algorithm

Quick Start Guide

	Download and install the Python package. Installation instructions [http://pygorithm.readthedocs.io/en/latest/#getting-started]

	Just import the required algorithm and start learning

from pygorithm.sorting import bubble_sort

This will print the code for bubble sort
print(bubble_sort.get_code())

my_list = [12, 4, 2, 14, 3, 7, 5]

to sort the list
sorted_list = bubble_sort.sort(my_list)

Getting Started

	For getting started, first download the package using Python package manager

pip3 install pygorithm

	For Python 2, you can use pip instead.

	Or you can download the source code from here [https://github.com/OmkarPathak/pygorithm], and then just install the package using

python setup.py install

Binary Conversions

A place for implementation of base conversions

Features

	To see all the available functions in a module, you can just type help() with the module name as argument. For example,

>>> from pygorithm import binary
>>> help(binary)
 Help on package pygorithm.binary in pygorithm:

 NAME
 pygorithm.binary - Collection or binary conversions and algorithms

 MODULE REFERENCE
 https://docs.python.org/3.5/library/pygorithm.binary.html

 The following documentation is automatically generated from the Python
 source files. It may be incomplete, incorrect or include features that
 are considered implementation detail and may vary between Python
 implementations. When in doubt, consult the module reference at the
 location listed above.

 PACKAGE CONTENTS
 ascii
 base10
 base16
 base2
 binary_utils

 DATA
 __all__ = ['ascii', 'base2', 'base10', 'base16']

ASCII Conversions

	Functions and their uses

ASCII

	Conversions from ASCII to:

	
	base2

	base16

Author: Ian Doarn

	
pygorithm.binary.ascii.to_base16(string, visualize=False)

	Convert ascii to hexadecimal
:param string: string to convert
:param visualize: Show process
:param as_string: return value as string not array
:return: hex representation of given string

	
pygorithm.binary.ascii.to_base2(string, visualize=False, as_string=False)

	Convert ascii string to binary
:param string: Ascii string
:param visualize: Show process
:param as_string: join strings with a space as one large value
:return: array of binary numbers, or entire string

Base2 Coversions

	Functions and their uses

Binary: Base2

	Conversions from base2 to:

	
	base10

	base16

	ASCII

Author: Ian Doarn

	
pygorithm.binary.base2.to_ascii(b, visualize=False)

	Convert binary to ASCII

	Parameters:	
	b – binary number or array

	visualize – Show process

	Returns:	ASCII String

	
pygorithm.binary.base2.to_base10(n, visualize=False)

	Convert given number to a list
for every number do the following formula

x * 2 + number

repeat for each result! Example:

binary number = 100110

0 x 2 + 1 = 1
1 x 2 + 0 = 2
2 x 2 + 0 = 4
4 x 2 + 1 = 9
9 x 2 + 1 = 19
19 x 2 + 0 = 38

	Parameters:	
	n – binary number

	visualize – Show process

	Returns:	decimal number

	
pygorithm.binary.base2.to_base16(n, visualize=False)

	Convert binary numbers to hexadecimal numbers

	Parameters:	
	n – binary number

	visualize – Visualise the process

	Returns:	hexadecimal number

Base10 Coversions

	Functions and their uses

Binary: Base10

	Conversions from base10 to:

	
	base2

	base16

Author: Ian Doarn

	
pygorithm.binary.base10.to_base2(n, visualize=False)

	Divide each number by 2 using
the % operator.

Reverse the resulting list of numbers
and return the result

	Parameters:	
	n – decimal number

	visualize – Show process

	Returns:	binary number

	
pygorithm.binary.base10.to_base16(n, visualize=False)

	Convert decimal number to hexadecimal

Divide the number by 16 and add the remainder
to a list, round down the value after division
and repeat till our value is 0

Reverse the results list, get each values respective
hex value using HEX_VALUES map

	Parameters:	
	n – decimal number

	visualize – Show process

	Returns:	hexadecimal number

Base16 Coversions

	Functions and their uses

Binary: Base16

	Conversions from base16 to:

	
	base2

	base10

	ASCII

Author: Ian Doarn

	
pygorithm.binary.base16.to_base2(h, visualize=False)

	Convert hexadecimal to binary number

	Parameters:	
	h – hexadecimal number

	visualize – Show process

	Returns:	binary number

	
pygorithm.binary.base16.to_base10(h, visualize=False)

	Convert hexadecimal number to decimal number

Send hex to a list and reverse. Evaluate each hex value
via HEX_LETTER_VALUES map. Enumerate the list,

using the equation: value * 16 ^ index

value is the hex char value: F -> 15
index is its position in the list: [‘1’, ‘A’, ‘F’] F’s index = 2

Continue this for each hex letter until we reach the end of the list,
summing all evaluated values.

	Parameters:	
	h – hexadecimal number

	visualize – Show process

	Returns:	decimal number

	
pygorithm.binary.base16.to_ascii(h_array, visualize=False)

	Convert base16 array to ASCII string

Input must be a list of strings:
Example:

	array = [

	‘74’, ‘68’, ‘65’,
‘20’, ‘71’, ‘75’,
‘69’, ‘63’, ‘6B’,
‘20’, ‘62’, ‘72’,
‘6F’, ‘77’, ‘6E’,
‘20’, ‘66’, ‘6F’,
‘78’, ‘20’, ‘6A’,
‘75’, ‘6D’, ‘70’,
‘73’, ‘20’, ‘6F’,
‘76’, ‘65’, ‘72’,
‘20’, ‘74’, ‘68’,
‘65’, ‘20’, ‘6C’,
‘61’, ‘7A’, ‘79’,
‘20’, ‘64’, ‘6F’,
‘67’

]

result -> the quick brown fox jumps over the lazy dog

	Parameters:	
	h_array – hex value array

	visualize – Show process

	Returns:	ASCII string

Data Structures

Implementing Data Structures purely in Python.

Quick Start Guide

import the required data structure
from pygorithm.data_structures import stack

create a stack with default stack size 10
myStack = stack.Stack()
myStack.push(2)

print the contents of stack
print(myStack)

Features

	
	Data Structures implementations available:

	
	
	Stack

	
	Stack (data_structures.stack.Stack)

	Infix to Postfix conversion (data_structures.stack.InfixToPostfix)

	
	Queue

	
	Queue (data_structures.queue.Queue)

	Deque (data_structures.queue.Deque)

	
	Linked List

	
	Singly Linked List (data_structures.linked_list.SinglyLinkedList)

	Doubly Linked List (data_structures.linked_list.DoublyLinkedList)

	
	Tree

	
	Binary Tree (data_structures.tree.BinaryTree)

	Binary Seach Tree (data_structures.tree.BinarySearchTree)

	
	Graph

	
	Graph (data_structures.graph.Graph)

	Topological Sort (data_structures.graph.TopologicalSort)

	Check cycle in Directed Graph (data_structures.graph.CheckCycleDirectedGraph)

	Check cycle in Undirected Graph (data_structures.graph.CheckCycleUndirectedGraph)

	
	Heap

	
	Heap (data_structures.heap.Heap)

	
	QuadTree

	
	QuadTree (data_structures.quadtree.QuadTree)

	Get the code used for any of the implementation

from pygorithm.data_structures.stack import Stack

myStack = Stack()
print(myStack.get_code())

	To see all the available functions in a module, you can just type help() with the module name as argument. For example,

>>> from pygorithm import data_structures
>>> help(data_structures)
 Help on package pygorithm.data_structures in pygorithm:

 NAME
 pygorithm.data_structures

 PACKAGE CONTENTS
 graph
 heap
 linked_list
 modules
 queue
 stack
 tree

Stack

Author: OMKAR PATHAK
Created On: 3rd August 2017

Stack

	
class pygorithm.data_structures.stack.Stack(limit=10)

	Stack object

	
push(data)

	pushes an item into the stack
returns -1 if the stack is empty

	
pop()

	pops the topmost item from the stack
returns -1 if the stack is empty

	
peek()

	returns the topmost element of the stack
returns -1 if the stack is empty

	
is_empty()

	checks if the stack is empty
returns boolean value, True or False

	
size()

	returns the current size of the stack

	
static get_code()

	returns the code for current class

Infix to Postfix

	
class pygorithm.data_structures.stack.InfixToPostfix(expression=None, stack=None)

	get the postfix of the given infix expression

	
infix_to_postfix()

	function to generate postfix expression from infix expression

	
static get_code()

	returns the code of the current class

Queue

Author: OMKAR PATHAK
Created On: 3rd August 2017

Queue

	
class pygorithm.data_structures.queue.Queue(limit=10)

	Queue implementation

	
size()

	returns the current size of the queue

	
is_empty()

	checks if the queue is empty

	
enqueue(data)

	inserts an item into the queue

	
dequeue()

	pops an item from the queue which was first inserted

	
get_code()

	Return source code for Queue class
:return:

Deque

	
class pygorithm.data_structures.queue.Deque(limit=10)

	Deque implementation

	
is_empty()

	checks whether the deque is empty

	
is_full()

	checks whether the deque is full

	
insert_rear(data)

	inserts an element at the rear end of the deque

	
insert_front(data)

	inserts an element at the front end of the deque

	
delete_rear()

	deletes an element from the rear end of the deque

	
delete_front()

	deletes an element from the front end of the deque

	
static get_code()

	returns the code of the current class

Linked Lists

Author: OMKAR PATHAK
Created On: 5th August 2017

Linked l_list and Node can be accommodated
in separate classes for convenience

Node

	
class pygorithm.data_structures.linked_list.Node(data, next_node=None)

	Node class for creating a node
for linked list.
Each node has its data and a pointer that
points to next node in the Linked l_list

	
static get_code()

	return the code for the current class

Singly Linked List

	
class pygorithm.data_structures.linked_list.SinglyLinkedList

	Defining the head of the linked list

	
get_data()

	prints the elements in the linked list

	
insert_at_start(data)

	insert an item at the beginning of the linked list

	
insert_after(next_node_data, data)

	insert an item after an element in the linked list

	
insert_at_end(data)

	insert an item at the end of the linked list

	
delete(data)

	to delete specified element from the linked list

	
static get_code()

	return the code for the current class

Doubly Linked List

	
class pygorithm.data_structures.linked_list.DoublyLinkedList

	DoublyLinkedList Class

	
get_data()

	prints the elements in the linked list

	
insert_at_start(data)

	insert an element at the beginning of the linked list

	
insert_at_end(data)

	insert an element at the end of the linked list

	
delete(data)

	to delete specified element from the linked list

	
static get_code()

	returns the code of the current class

Tree

Author: OMKAR PATHAK
Created On: 9th August 2017

Node class to create a node
for binary tree

Node

	
class pygorithm.data_structures.tree.Node(data=None)

	Node class for creating a node for tree.
Each node has its data and a pointer
that points to next node in the Linked List

	
set_left(node)

	for setting the left child of the node

	
set_right(node)

	for setting the right child of the node

	
get_left()

	for getting the left child of the node

	
get_right()

	for getting the right child of the node

	
set_data(data)

	for setting the data of the node

	
get_data()

	for getting the data of the node

	
static get_code()

	returns the code of the current class

Binary Tree

	
class pygorithm.data_structures.tree.BinaryTree

	BinaryTree class to create a binary tree

	
inorder(root)

	in this we traverse first to the leftmost node,
then print its data and then traverse for rightmost node
:param root: Node object

	
preorder(root)

	in this we first print the root node and then
traverse towards leftmost node and then to the rightmost node
:param root: Node object

	
postorder(root)

	in this we first traverse to the leftmost node and then
to the rightmost node and then print the data
:param root: Node object

	
static get_code()

	returns the code of the current class

Binary Search Tree Node

	
class pygorithm.data_structures.tree.BSTNode(data)

	class for creating a node for binary Search tree

	
set_left(node)

	for setting the left child of the node

	
set_right(node)

	for setting the right child of the node

	
get_left()

	returns the left child of the current node

	
get_right()

	returns the right child of the current node

	
set_data(data)

	for setting the data of a node

	
get_data()

	returns the data of the current node

	
insert(data)

	For inserting the data in the Tree

	
static min_val_bst_node(bst_node)

	for returning the node with the lowest value

	
delete(data)

	For deleting the bst_node

	
find(data)

	This function checks whether the specified data is in tree or not

	
inorder(root)

	in this we first traverse to the leftmost node and
then print the data and then move to the rightmost child
:param root: Node object

	
preorder(root)

	in this we first print the root node and then
traverse towards leftmost node and then to the rightmost node
:param root: Node object

	
postorder(root)

	in this we first traverse to the leftmost node
and then to the rightmost node and then print the data
:param root: Node object

	
static get_code()

	returns the code of current class

Binary Search Tree

	
class pygorithm.data_structures.tree.BinarySearchTree

	
	
insert(data)

	inserts a node in the tree

	
delete(data)

	deletes the node with the specified data from the tree

	
preorder()

	finding the preorder of the tree

	
inorder()

	finding the inorder of the tree

	
postorder()

	finding the postorder of the tree

	
static get_code()

	returns the code of the current class

Graph

Author: OMKAR PATHAK
Created On: 12th August 2017

Graph

	
class pygorithm.data_structures.graph.Graph

	Graph object
Creates the graph

	
print_graph()

	Prints the contents of the graph

	
add_edge(from_vertex, to_vertex)

	Adds an edge in the graph

	
get_code()

	returns the code for the current class

Weighted Graph

	
class pygorithm.data_structures.graph.WeightedGraph

	WeightedGraph object
A graph with a numerical value (weight) on edges

	
add_edge(u, v, weight)

	

	Parameters:	
	u – from vertex - type : integer

	v – to vertex - type : integer

	weight – weight of the edge - type : numeric

	
print_graph()

	Print the graph
:return: None

	
kruskal_mst()

	Kruskal algorithm for finding the minimum spanning tree of a weighted graph.
This version use a union-find data structure.
More detailed info here: https://en.wikipedia.org/wiki/Kruskal%27s_algorithm
Author: Michele De Vita <mik3dev@gmail.com>

	
static kruskal_time_complexity()

	Return time complexity of kruskal
:return: string

	
classmethod kruskal_code()

	Returns the code for current class

Weighted Undirected Graph

	
class pygorithm.data_structures.graph.WeightedUndirectedGraph

	WeightedUndirectedGraph object
A graph with a numerical value (weight) on edges, which
is the same for both directions in an undirected graph.

	
add_edge(u, v, weight)

	Adds the specified edge to this graph. If the edge already exists,
this will only modify the weight (not create duplicates).
:param u: from vertex
:param v: to vertex
:param weight: weight of the edge - type : numeric

	
get_edge_weight(u, v)

	Gets the weight between u and v if such an edge
exists, or None if it does not.
:param u: one edge
:param v: the other edge
:return: numeric or None

	
remove_edge(edge, other_edge_or_none=None)

	Removes the specified edge from the grid entirely or,
if specified, the connection with one other edge.
Behavior is undefined if the connection does not
exist.
:param edge: the edge to remove
:param other_edge_or_none: an edge connected to edge or none

	
gridify(size, weight)

	Constructs connections from a square grid starting at (0, 0)
until (size-1, size-1) with connections between adjacent and
diagonal nodes. Diagonal nodes have a weight of weight*sqrt(2)
:param size: the size of the square grid to construct - type : integer
:param weight: the weight between orthogonal nodes. - type: numeric
:return: None

Topological Sort

	
class pygorithm.data_structures.graph.TopologicalSort

	
	
topological_sort()

	function for sorting graph elements using topological sort

	
get_code()

	returns the code for the current class

Check Cycle in Directed Graph

	
class pygorithm.data_structures.graph.CheckCycleDirectedGraph

	Class to check cycle in directed graph

	
print_graph()

	for printing the contents of the graph

	
add_edge(from_vertex, to_vertex)

	function to add an edge in the graph

	
check_cycle()

	This function will return True if graph is cyclic else return False

	
static get_code()

	returns the code for the current class

Check Cycle in Undirected Graph

	
class pygorithm.data_structures.graph.CheckCycleUndirectedGraph

	Class to check cycle in undirected graph

	
print_graph()

	for printing the contents of the graph

	
add_edge(from_vertex, to_vertex)

	for adding the edge between two vertices

	
check_cycle()

	This function will return True if graph is cyclic else return False

	
static get_code()

	returns the code for the current class

Heap

Author: ALLSTON MICKEY
Contributed: OMKAR PATHAK
Created On: 11th August 2017

Heap

	
class pygorithm.data_structures.heap.Heap(limit=10)

	min-heap implementation as queue

	
static parent_idx(idx)

	retrieve the parent

	
static left_child_idx(idx)

	retrieve the left child

	
static right_child_idx(idx)

	retrieve the right child

	
insert(data)

	inserting an element in the heap

	
heapify_up()

	Start at the end of the tree (last enqueued item).

Compare the rear item to its parent, swap if
the parent is larger than the child (min-heap property).
Repeat until the min-heap property is met.

Best Case: O(1), item is inserted at correct position, no swaps needed
Worst Case: O(log n), item needs to be swapped throughout all levels of tree

	
pop()

	Removes the lowest value element (highest priority, at root) from the heap

	
favorite(parent)

	Determines which child has the highest priority by 3 cases

	
heapify_down()

	Select the root and sift down until min-heap property is met.

While a favorite child exists, and that child is smaller
than the parent, swap them (sift down).

Best Case: O(1), item is inserted at correct position, no swaps needed
Worst Case: O(logn), item needs to be swapped throughout all levels of tree

	
get_code()

	returns the code for the current class

Trie

Node class to create a node
for trie

Trie

	
class pygorithm.data_structures.trie.Trie

	
	
insert(word)

	Inserts a word in the trie. Starting from the root, move down the trie
following the path of characters in the word. If the nodes for the word
characters end, add them. When the last char is added, mark it as a
word-ending node.

	
search(word)

	Searches for given word in trie. We want to find the last node for the
word. If we can’t, then it means the word is not in the trie.

	
find_words(prefix)

	Find all words with the given prefix

	
find_final_node(word)

	Returns the last node in given word. The process goes like this:
Start from the root. For every char in word, go down one level.
If we can’t go down a level, then the word doesn’t exist.
If we do, and the current char is the last char of the word and
the node we are currently at is a word, then we have found the given
word.

	
build_word_list(v, cWord)

	
	Recursively builds the list of words.

	
	v: Node to check

	cWord : The word built up to v

QuadTree

Author: Timothy Moore
Created On: 31th August 2017

Defines a two-dimensional quadtree of arbitrary
depth and bucket size.

QuadTreeEntity

	
class pygorithm.data_structures.quadtree.QuadTreeEntity(aabb)

	This is the minimum information required for an object to
be usable in a quadtree as an entity. Entities are the
things that you are trying to compare in a quadtree.

	Variables:	aabb – the axis-aligned bounding box of this entity

	
__init__(aabb)

	Create a new quad tree entity with the specified aabb

	Parameters:	aabb (pygorithm.geometry.rect2.Rect2) – axis-aligned bounding box

	
__repr__()

	Create an unambiguous representation of this entity.

Example:

from pygorithm.geometry import (vector2, rect2)
from pygorithm.data_structures import quadtree

_ent = quadtree.QuadTreeEntity(rect2.Rect2(5, 5))

prints quadtreeentity(aabb=rect2(width=5, height=5, mincorner=vector2(x=0, y=0)))
print(repr(_ent))

	Returns:	unambiguous representation of this quad tree entity

	Return type:	string

	
__str__()

	Create a human readable representation of this entity

Example:

from pygorithm.geometry import (vector2, rect2)
from pygorithm.data_structures import quadtree

_ent = quadtree.QuadTreeEntity(rect2.Rect2(5, 5))

prints entity(at rect(5x5 at <0, 0>))
print(str(_ent))

	Returns:	human readable representation of this entity

	Return type:	string

	
__weakref__

	list of weak references to the object (if defined)

QuadTree

	
class pygorithm.data_structures.quadtree.QuadTree(bucket_size, max_depth, location, depth=0, entities=None)

	A quadtree is a sorting tool for two-dimensional space, most
commonly used to reduce the number of required collision
calculations in a two-dimensional scene. In this context,
the scene is stepped without collision detection, then a
quadtree is constructed from all of the boundaries

Caution

Just because a quad tree has split does not mean entities will be empty. Any
entities which overlay any of the lines of the split will be included in the
parent of the quadtree.

Tip

It is important to tweak bucket size and depth to the problem, but a common error
is too small a bucket size. It is typically not reasonable to have a bucket size
smaller than 16; A good starting point is 64, then modify as appropriate. Larger
buckets reduce the overhead of the quad tree which could easily exceed the improvement
from reduced collision checks. The max depth is typically just a sanity check since
depth greater than 4 or 5 would either indicate a badly performing quadtree (too
dense objects, use an r-tree or kd-tree) or a very large world (where an iterative
quadtree implementation would be appropriate).

	Variables:	
	bucket_size – maximum number objects per bucket (before max_depth)

	max_depth – maximum depth of the quadtree

	depth – the depth of this node (0 being the topmost)

	location – where this quad tree node is situated

	entities – the entities in this quad tree and in NO OTHER related quad tree

	children – either None or the 4 QuadTree children of this node

	
__init__(bucket_size, max_depth, location, depth=0, entities=None)

	Initialize a new quad tree.

Warning

Passing entities to this quadtree will NOT cause it to split automatically!
You must call think() for that. This allows for more predictable
performance per line.

	Parameters:	
	bucket_size (int) – the number of entities in this quadtree

	max_depth (int) – the maximum depth for automatic splitting

	location (pygorithm.geometry.rect2.Rect2) – where this quadtree is located

	depth (int) – the depth of this node

	entities (list of QuadTreeEntity or None for empty list) – the entities to initialize this quadtree with

	
think(recursive=False)

	Call split() if appropriate

Split this quad tree if it has not split already and it has more
entities than bucket_size and depth is
less than max_depth.

If recursive is True, think is called on the children with
recursive set to True after splitting.

	Parameters:	recursive (bool) – if think(True) should be called on children (if there are any)

	
split()

	Split this quadtree.

Caution

A call to split will always split the tree or raise an error. Use
think() if you want to ensure the quadtree is operating
efficiently.

Caution

This function will not respect bucket_size or
max_depth.

	Raises:	ValueError – if children is not empty

	
get_quadrant(entity)

	Calculate the quadrant that the specified entity belongs to.

Touching a line is considered overlapping a line. Touching is
determined using math.isclose()

Quadrants are:

	-1: None (it overlaps 2 or more quadrants)

	0: Top-left

	1: Top-right

	2: Bottom-right

	3: Bottom-left

Caution

This function does not verify the entity is contained in this quadtree.

This operation takes O(1) time.

	Parameters:	entity (QuadTreeEntity) – the entity to place

	Returns:	quadrant

	Return type:	int

	
insert_and_think(entity)

	Insert the entity into this or the appropriate child.

This also acts as thinking (recursively). Using insert_and_think()
iteratively is slightly less efficient but has more predictable performance
than initializing with a large number of entities then thinking is slightly
faster but may hang. Both may exceed recursion depth if max_depth
is too large.

	Parameters:	entity (QuadTreeEntity) – the entity to insert

	
retrieve_collidables(entity, predicate=None)

	Find all entities that could collide with the specified entity.

Warning

If entity is, itself, in the quadtree, it will be returned. The
predicate may be used to prevent this using your preferred equality
method.

The predicate takes 1 positional argument (the entity being considered)
and returns False if the entity should never be returned, even if it
might collide with the entity. It should return True otherwise.

	Parameters:	
	entity (QuadTreeEntity) – the entity to find collidables for

	predicate (types.FunctionType or None) – the predicate

	Returns:	potential collidables (never `None)

	Return type:	list of QuadTreeEntity

	
find_entities_per_depth()

	Calculate the number of nodes and entities at each depth level in this
quad tree. Only returns for depth levels at or equal to this node.

This is implemented iteratively. See __str__() for usage example.

	Returns:	dict of depth level to number of entities

	Return type:	dict int: int

	
find_nodes_per_depth()

	Calculate the number of nodes at each depth level.

This is implemented iteratively. See __str__() for usage example.

	Returns:	dict of depth level to number of nodes

	Return type:	dict int: int

	
sum_entities(entities_per_depth=None)

	Sum the number of entities in this quad tree and all lower quad trees.

If entities_per_depth is not None, that array is used to calculate the sum
of entities rather than traversing the tree. Either way, this is implemented
iteratively. See __str__() for usage example.

	Parameters:	entities_per_depth (dict int: (int, int) or None) – the result of find_entities_per_depth()

	Returns:	number of entities in this and child nodes

	Return type:	int

	
calculate_avg_ents_per_leaf()

	Calculate the average number of entities per leaf node on this and child
quad trees.

In the ideal case, the average entities per leaf is equal to the bucket size,
implying maximum efficiency. Note that, as always with averages, this might
be misleading if this tree has reached its max depth.

This is implemented iteratively. See __str__() for usage example.

	Returns:	average number of entities at each leaf node

	Return type:	numbers.Number

	
calculate_weight_misplaced_ents(sum_entities=None)

	Calculate a rating for misplaced entities.

A misplaced entity is one that is not on a leaf node. That weight is multiplied
by 4*remaining maximum depth of that node, to indicate approximately how
many additional calculations are required.

The result is then divided by the total number of entities on this node (either
calculated using sum_entities() or provided) to get the approximate
cost of the misplaced nodes in comparison with the placed nodes. A value greater
than 1 implies a different tree type (such as r-tree or kd-tree) should probably be
used.

This is implemented iteratively. See __str__() for usage example.

	Parameters:	sum_entities (int or None) – the number of entities on this node

	Returns:	weight of misplaced entities

	Return type:	numbers.Number

	
__repr__()

	Create an unambiguous representation of this quad tree.

This is implemented iteratively.

Example:

from pygorithm.geometry import (vector2, rect2)
from pygorithm.data_structures import quadtree

create a tree with a up to 2 entities in a bucket that
can have a depth of up to 5.
_tree = quadtree.QuadTree(1, 5, rect2.Rect2(100, 100))

add a few entities to the tree
_tree.insert_and_think(quadtree.QuadTreeEntity(rect2.Rect2(2, 2, vector2.Vector2(5, 5))))
_tree.insert_and_think(quadtree.QuadTreeEntity(rect2.Rect2(2, 2, vector2.Vector2(95, 5))))

prints quadtree(bucket_size=1, max_depth=5, location=rect2(width=100, height=100, mincorner=vector2(x=0, y=0)), depth=0, entities=[], children=[quadtree(bucket_size=1, max_depth=5, location=rect2(width=50.0, height=50.0, mincorner=vector2(x=0, y=0)), depth=1, entities=[quadtreeentity(aabb=rect2(width=2, height=2, mincorner=vector2(x=5, y=5)))], children=None), quadtree(bucket_size=1, max_depth=5, location=rect2(width=50.0, height=50.0, mincorner=vector2(x=50.0, y=0)), depth=1, entities=[quadtreeentity(aabb=rect2(width=2, height=2, mincorner=vector2(x=95, y=5)))], children=None), quadtree(bucket_size=1, max_depth=5, location=rect2(width=50.0, height=50.0, mincorner=vector2(x=50.0, y=50.0)), depth=1, entities=[], children=None), quadtree(bucket_size=1, max_depth=5, location=rect2(width=50.0, height=50.0, mincorner=vector2(x=0, y=50.0)), depth=1, entities=[], children=None)])

	Returns:	unambiguous, recursive representation of this quad tree

	Return type:	string

	
__str__()

	Create a human-readable representation of this quad tree

Caution

Because of the complexity of quadtrees it takes a fair amount of calculation to
produce something somewhat legible. All returned statistics have paired functions.
This uses only iterative algorithms to calculate statistics.

Example:

from pygorithm.geometry import (vector2, rect2)
from pygorithm.data_structures import quadtree

create a tree with a up to 2 entities in a bucket that
can have a depth of up to 5.
_tree = quadtree.QuadTree(2, 5, rect2.Rect2(100, 100))

add a few entities to the tree
_tree.insert_and_think(quadtree.QuadTreeEntity(rect2.Rect2(2, 2, vector2.Vector2(5, 5))))
_tree.insert_and_think(quadtree.QuadTreeEntity(rect2.Rect2(2, 2, vector2.Vector2(95, 5))))

prints quadtree(at rect(100x100 at <0, 0>) with 0 entities here (2 in total); (nodes, entities) per depth: [0: (1, 0), 1: (4, 2)] (allowed max depth: 5, actual: 1), avg ent/leaf: 0.5 (target 1), misplaced weight 0.0 (0 best, >1 bad)
print(_tree)

	Returns:	human-readable representation of this quad tree

	Return type:	string

	
static get_code()

	Get the code for the QuadTree class

	Returns:	code for QuadTree

	Return type:	string

	
__weakref__

	list of weak references to the object (if defined)

Dynamic Programming

A place for implementation of greedy algorithms

Features

	To see all the available functions in a module, you can just type help() with the module name as argument. For example,

>>> from pygorithm import greedy_algorithm
>>> help(greedy_algorithm)
 Help on package pygorithm.dynamic_programming in pygorithm:

 NAME
 pygorithm.dynamic_programming - Collection for dynamic programming algorithms

 PACKAGE CONTENTS
 binary_knapsack
 lis

 DATA
 __all__ = ['binary_knapsack', 'lis']

Binary (0/1) Knapsack

	Functions and their uses

Author: Omkar Pathak
Created At: 25th August 2017

	
pygorithm.dynamic_programming.binary_knapsack.knapsack(w, value, weight)

	The knapsack problem or rucksack problem is a problem in combinatorial optimization: Given a set of
items, each with a weight and a value, determine the number of each item to include in a collection
so that the total weight is less than or equal to a given limit and the total value is as large as
possible. It derives its name from the problem faced by someone who is constrained by a fixed-size
knapsack and must fill it with the most valuable items.

	Parameters:	
	w – maximum weight capacity

	value – an array of values of items in the knapsack

	weight – an array of weights of items in the knapsack

	
pygorithm.dynamic_programming.binary_knapsack.get_code()

	returns the code for the knapsack function

Longest Increasing Subsequence

	Functions and their uses

Author: Omkar Pathak
Created At: 25th August 2017

	
pygorithm.dynamic_programming.lis.longest_increasing_subsequence(_list)

	The Longest Increasing Subsequence (LIS) problem is to find the length of the longest subsequence of a
given sequence such that all elements of the subsequence are sorted in increasing order. For example,
the length of LIS for [10, 22, 9, 33, 21, 50, 41, 60, 80] is 6 and LIS is [10, 22, 33, 50, 60, 80].

	Parameters:	_list – an array of elements

	Returns:	returns a tuple of maximum length of lis and an array of the elements of lis

	
pygorithm.dynamic_programming.lis.get_code()

	returns the code for the longest_increasing_subsequence function

Fibonacci

Learning fibonacci implementations in few ways!

Quick Start Guide

from pygorithm.fibonacci import recursion as fib_recursion

sequence = fib_recursion.get_sequence(10)
print(sequence) # [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Features

	
	Fibonacci implementations available:

	
	Generator

	Golden ratio

	Memorization (which saves some recursions to avoid computation of same series again and again)

	Recursion

	Get the code used for any of the implementation

from pygorithm.fibonacci import recursion as fib_recursion

code = fib_recursion.get_code()
print(code)

	To see all the available functions in a module, you can just type help() with the module name as argument. For example,

>>> from pygorithm import fibonacci
>>> help(fibonacci)
 Help on package pygorithm.fibonacci in pygorithm:

 NAME
 pygorithm.fibonacci - Collection of fibonacci methods and functions

 PACKAGE CONTENTS
 generator
 goldenratio
 memoization
 modules
 recursion

Implementations API

	Functions and their uses

	
get_sequence(number)

	

	number : arbitrary integer, that need to be calculated in Fibonacci number type

	Return Value : return Fibonacci value by specified number as integer

	
get_code()

	

	Return Value : returns the code for the get_sequence() function

Geometry

Some geometrical shapes and operations

Quick Start Guide

import the required shapes and structures
from pygorithm.geometry import polygon2
from pygorithm.geometry import vector2

create a regular polygon
poly1 = polygon2.Polygon2.from_regular(5, 5)

create a polygon from tuple (x, y) - note that the polygon must be convex
and the points must be clockwise
poly2 = polygon2.Polygon2(points=[(0, 0), (1, 0), (1, 1), (0, 1)])

create a polygon from vector2s.
poly3 = polygon2.Polygon2(points=[vector2.Vector2(0, 0),
 vector2.Vector2(1, 1),
 vector2.Vector2(2, 0)])

create a polygon by rotating another polygon
poly4 = poly3.rotate(0.2)
poly5 = poly3.rotate(degrees = 30)

check intersection
intrs, mtv = polygon2.Polygon2.find_intersection(poly1, poly2, (0, 0), (1, 0))

if intrs:
 mtv_dist = mtv[0]
 mtv_vec = mtv[1]
 print('They intersect. The best way to push poly1 is {} units along {}'.format(mtv_dist, mtv_vec))
else:
 print('No intersection')

Features

	
	Structures available:

	
	Vector2 (vector2)

	Line2 (line2)

	AxisAlignedLine (axisall)

	
	Shapes available:

	
	Concave Polygons (polygon2)

	Rectangles (rect2)

	
	Algorithms available:

	
	Separating Axis Theorem (polygon2)

	Broad-phase (rect2)

	Extrapolated intersection (extrapolated_intersection)

Vector2

	
class pygorithm.geometry.vector2.Vector2(*args, **kwargs)

	Define a simple two-dimensional, mutable vector.

Important

Equality is not overriden on vectors, because it is expected that
vectors will be used mutably by directly modifying x and y. However, all
functions on vectors are immutable (they return a copy)

	Variables:	
	x (numbers.Number) – The first component of this vector.

	y (numbers.Number) – The second component of this vector.

	
__init__(*args, **kwargs)

	Create a new Vector2 from the two components.

Accepts a pair of unnamed parameters, a pair of named x, y parameters,
another Vector2, or a tuple with 2 numerics. Examples of each:

from pygorithm.geometry import vector2

A pair of unnamed parameters
vec1 = vector2.Vector2(0, 5)

A pair of named parameters
vec2 = vector2.Vector2(x = 0, y = 5)

Another vector2
vec3 = vector2.Vector2(vec2)

A tuple with two numerics
vec4 = vector2.Vector2((0, 5))

	Parameters:	
	args – unnamed arguments (purpose guessed by order)

	kwargs – named arguments (purpose known by name)

	
__add__(other)

	Adds the two vectors component wise.

Example:

from pygorithm.geometry import vector2

vec1 = vector2.Vector2(0, 3)
vec2 = vector2.Vector2(2, 4)

vec3 = vec1 + vec2

prints <2, 7>
print(vec3)

	Parameters:	other (pygorithm.geometry.vector2.Vector2) – the vector to add to this one

	Returns:	a new vector that is the sum of self and other

	Return type:	pygorithm.geometry.vector2.Vector2

	
__sub__(other)

	Subtract the two vectors component wise.

Example:

from pygorithm.geometry import vector2

vec1 = vector2.Vector2(5, 5)
vec2 = vector2.Vector2(2, 3)

vec3 = vec1 - vec2
vec4 = vec2 - vec1

prints <3, 2>
print(vec3)

prints <2, 3>
print(vec4)

	Parameters:	other (pygorithm.geometry.vector2.Vector2) – the vector to subtract from this one

	Returns:	a new vector two that is the difference of self and other

	Return type:	pygorithm.geometry.vector2.Vector2

	
__mul__(scale_factor)

	Scale the vector by the specified factor.

Caution

This will never perform a dot product. If scale_factor is a Vector2, an
exception is thrown.

Example:

from pygorithm.geometry import vector2

vec1 = vector2.Vector2(4, 8)

vec2 = vec1 * 0.5

prints <2, 4>
print(vec2)

	Param:	scale_factor the amount to scale this vector by

	Returns:	a new vector that is self scaled by scale_factor

	Return type:	pygorithm.geometry.vector2.Vector2

	Raises:	TypeError – if scale_factor is a Vector2

	
__rmul__(scale_factor)

	Scale the vector by the specified factor.

Caution

This will never perform a dot product. If scale_factor is a Vector2, an
exception is thrown.

Example:

from pygorithm.geometry import vector2

vec1 = vector2.Vector2(4, 8)

vec2 = 2 * vec1

prints <8, 16>
print(vec2)

	Param:	scale_factor the amount to scale this vector by

	Returns:	a new vector that is self scaled by scale_factor

	Return type:	pygorithm.geometry.vector2.Vector2

	Raises:	TypeError – if scale_factor is a Vector2

	
__repr__()

	Create an unambiguous representation of this vector

Example:

from pygorithm.geometry import vector2

vec = vector2.Vector2(3, 5)

prints vector2(x=3, y=5)
print(repr(vec))

	Returns:	an unambiguous representation of this vector

	Return type:	string

	
__str__()

	Create a human-readable representation of this vector.

Rounds to 3 decimal places if there are more.

Example:

from pygorithm.geometry import vector2

vec = vector2.Vector2(7, 11)

prints <7, 11>
print(str(vec))

also prints <7, 11>
print(vec)

	Returns:	a human-readable representation of this vector

	Return type:	string

	
__weakref__

	list of weak references to the object (if defined)

	
dot(other)

	Calculate the dot product between this vector and other.

The dot product of two vectors is calculated as so:

Let v1 be a vector such that v1 = <v1_x, v1_y>
Let v2 be a vector such that v2 = <v2_x, v2_y>

v1 . v2 = v1_x * v2_x + v1_y * v2_y

Example:

from pygorithm.geometry import vector2

vec1 = vector2.Vector2(3, 5)
vec2 = vector2.Vector2(7, 11)

dot_12 = vec1.dot(vec2)

prints 76
print(dot_12)

	Parameters:	other (pygorithm.geometry.vector2.Vector2) – the other vector

	Returns:	the dot product of self and other

	Return type:	numbers.Number

	
cross(other)

	Calculate the z-component of the cross product between this vector and other.

The cross product of two vectors is calculated as so:

Let v1 be a vector such that v1 = <v1_x, v1_y>
Let v2 be a vector such that v2 = <v2_x, v2_y>

v1 x v2 = v1.x * v2.y - v1.y * v2.x

Caution

This is the special case of a cross product in 2 dimensions returning 1
value. This is really a vector in the z direction!

	
rotate(*args, **kwargs)

	The named argument “degrees” or “radians” may be passed in to rotate
this vector by the specified amount in degrees (or radians),
respectively. If both are omitted, the first unnamed argument is
assumed to be the amount to rotate in radians.

Additionally, the named argument “about” may be passed in to specify
about what the vector should be rotated. If omitted then the first
unconsumed unnamed argument is assumed to be the vector. If there are
no unconsumed unnamed arguments then the origin is assumed.

Examples:

from pygorithm.geometry import vector2
import math

vec1 = vector2.Vector2(1, 0)

vec2 = vec1.rotate(math.pi * 0.25)

prints <0.707, 0.707>
print(vec2)

vec3 = vec1.rotate(degrees = 45)

prints <0.707, 0.707>
print(vec3)

The following operations are all identical

vec4 = vec1.rotate(math.pi, vector2.Vector2(1, 1))
vec5 = vec1.rotate(radians = math.pi, about = vector2.Vector2(1, 1))
vec6 = vec1.rotate(degrees = 180, about = vector2.Vector2(1, 1))
vec7 = vec1.rotate(vector2.Vector2(1, 1), degrees = 180)

prints <1, 2>
print(vec4)

	Parameters:	
	args – the unnamed arguments (purpose guessed by position)

	kwargs – the named arguments (purpose known by name)

	Returns:	the new vector formed by rotating this vector

	Return type:	pygorithm.geometry.vector2.Vector2

	
normalize()

	Create the normalized version of this vector

The normalized version will go in the same direction but will
have magnitude of 1.

Note

This will never return self, even if this vector is already
normalized.

Example:

from pygorithm.geometry import vector2

vec1 = vector2.Vector2(2, 0)

vec2 = vec1.normalize()

prints <1, 0>
print(vec2)

	Returns:	a new normalized version of this vector

	Return type:	pygorithm.geometry.vector2.Vector2

	
magnitude_squared()

	Calculate the square of the magnitude of this vector.

Example:

from pygorithm.geometry import vector2

vec1 = vector2.Vector2(5, 12)
magn_sq = vec1.magnitude_squared()

prints 169 (13^2)
print(magn_sq)

	Returns:	square of the magnitude of this vector

	Return type:	numbers.Number

	
magnitude()

	Calculate the magnitude of this vector

Note

It is substantially faster to operate on magnitude squared
where possible.

Example:

from pygorithm.geometry import vector2

vec1 = vector2.Vector2(3, 4)
magn = vec1.magnitude()

prints 5
print(magn)

	Returns:	magnitude of this vector

	Return type:	numbers.Number

Line2

	
class pygorithm.geometry.line2.Line2(start, end)

	Define a two-dimensional directed line segment defined by two points.
This class is mostly used as a way to cache information that is
regularly required when working on geometrical problems.

Caution

Lines should be used as if they were completely immutable to ensure
correctness. All attributes of Line2 can be reconstructed from the two
points, and thus cannot be changed on their own and must be recalculated
if there were any changes to start or end.

Tip

To prevent unnecessary recalculations, many functions on lines accept an
‘offset’ argument, which is used to perform calculations on lines that
are simply shifts of other lines.

Note

The minimum x is guarranteed to be on either (or both) of
the start and end. However, minimum x and minimum y might not
come from the same point. The same is true for the maximum x
and maximum y.

	Variables:	
	start (pygorithm.geometry.vector2.Vector2) – the start of this line

	end (pygorithm.geometry.vector2.Vector2) – the end of this line

	
__init__(start, end)

	Create a new line from start to end.

	Parameters:	
	start (pygorithm.geometry.vector2.Vector2) – the start point

	end (pygorithm.geometry.vector2.Vector2) – the end point

	Raises:	ValueError – if start and end are at the same point

	
delta

	Get the vector from start to end, lazily initialized.

	Returns:	delta from start to end

	Return type:	pygorithm.geometry.vector2.Vector2

	
axis

	Get the normalized delta vector, lazily initialized

	Returns:	normalized delta

	Return type:	pygorithm.geometry.vector2.Vector2

	
normal

	Get normalized normal vector to axis, lazily initialized.

Get the normalized normal vector such that the normal
vector is 90 degrees counter-clockwise from the axis.

	Returns:	normalized normal to axis

	Return type:	pygorithm.geometry.vector2.Vector2

	
magnitude_squared

	Get the square of the magnitude of delta, lazily initialized.

	Returns:	square of magnitude of delta

	Return type:	numbers.Number

	
magnitude

	Get the magnitude of delta, lazily initialized.

Note

It is substantially faster to operate on squared magnitude,
where possible.

	Returns:	magnitude of delta

	Return type:	numbers.Number

	
min_x

	Get the minimum x that this line contains, lazily initialized.

	Returns:	minimum x this line contains

	Return type:	numbers.Number

	
min_y

	Get the minimum y that this line contains, lazily initialized.

	Returns:	minimum x this line contains

	Return type:	numbers.Number

	
max_x

	Get the maximum x that this line contains, lazily initialized.

	Returns:	maximum x this line contains

	Return type:	numbers.Number

	
max_y

	Get the maximum y that this line contains, lazily initialized.

	Returns:	maximum x this line contains

	Return type:	numbers.Number

	
slope

	Get the slope of this line, lazily initialized.

Caution

The slope may be 0 (horizontal line) or positive or negative
infinity (vertical lines). It may be necessary to handle
these lines seperately, typically through checking the
horizontal and
vertical properties.

	Returns:	the slope of this line (rise over run).

	Return type:	numbers.Number

	
y_intercept

	Get the y-intercept of this line, lazily initialized.

This does not take into account any offset of the
line and may return None if this is a vertical line.

Caution

This function will return a y-intercept for non-vertical
line segments that do not reach x=0.

Caution

The y-intercept will change based on the offset in a somewhat
complex manner.
calculate_y_intercept()
accepts an offset parameter.

	Returns:	the y-intercept of this line when unshifted

	Return type:	numbers.Number or None

	
horizontal

	Get if this line is horizontal, lazily initialized.

A line is horizontal if it has a slope of 0. This also
means that start.y == end.y

	Returns:	if this line is horizontal

	Return type:	bool

	
vertical

	Get if this line is vertical, lazily initialized.

A line is vertical if it has a slope of +inf or -inf. This
also means that start.x == end.x.

	Returns:	if this line is vertical

	Return type:	bool

	
__repr__()

	Get an unambiguous representation of this line

Example:

from pygorithm.geometry import (vector2, line2)

vec1 = vector2.Vector2(1, 1)
vec2 = vector2.Vector2(3, 4)

line = line2.Line2(vec1, vec2)

prints line2(start=vector2(x=1, y=1), end=vector2(x=3, y=4))
print(repr(line))

	Returns:	unambiguous representation of this line

	Return type:	string

	
__str__()

	Get a human-readable representation of this line

Example:

from pygorithm.geometry import (vector2, line2)

vec1 = vector2.Vector2(1, 1)
vec2 = vector2.Vector2(3, 4)

line = line2.Line2(vec1, vec2)

prints <1, 1> -> <3, 4>
print(str(line))

same as above
print(line)

	Returns:	human-readable representation of this line

	Return type:	string

	
calculate_y_intercept(offset)

	Calculate the y-intercept of this line when it is at the
specified offset.

If the offset is None this is exactly equivalent to y_intercept

	Parameters:	offset (pygorithm.geometry.vector2.Vector2 or None) – the offset of this line for this calculations

	Returns:	the y-intercept of this line when at offset

	Return type:	numbers.Number

	
static are_parallel(line1, line2)

	Determine if the two lines are parallel.

Two lines are parallel if they have the same or opposite slopes.

	Parameters:	
	line1 (pygorithm.geometry.line2.Line2) – the first line

	line2 (pygorithm.geometry.line2.Line2) – the second line

	Returns:	if the lines are parallel

	Return type:	bool

	
static contains_point(line, point, offset=None)

	Determine if the line contains the specified point.

Optionally, specify an offset for the line. Being
on the line is determined using math.isclose.

	Parameters:	
	line (pygorithm.geometry.line2.Line2) – the line

	point (pygorithm.geometry.vector2.Vector2) – the point

	offset (pygorithm.geometry.vector2.Vector2 or None) – the offset of the line or None for the origin

	Returns:	if the point is on the line

	Return type:	bool

	
static find_intersection(line1, line2, offset1=None, offset2=None)

	Find the intersection between the two lines.

The lines may optionally be offset by a fixed amount. This
will incur a minor performance penalty which is less than
that of recreating new lines.

Two lines are considered touching if they only share exactly
one point and that point is an edge of one of the lines.

If two lines are parallel, their intersection could be a line.

Tip

This will never return True, True

	Parameters:	
	line1 (pygorithm.geometry.line2.Line2) – the first line

	line2 (pygorithm.geometry.line2.Line2) – the second line

	offset1 (pygorithm.geometry.vector2.Vector2 or None) – the offset of line 1

	offset2 (pygorithm.geometry.vector2.Vector2 or None) – the offset of line 2

	Returns:	(touching, overlapping, intersection_location)

	Return type:	(bool, bool, pygorithm.geometry.line2.Line2 or pygorithm.geometry.vector2.Vector2 or None)

	
__weakref__

	list of weak references to the object (if defined)

Axis-Aligned Line

	
class pygorithm.geometry.axisall.AxisAlignedLine(axis, point1, point2)

	Define an axis aligned line.

This class provides functions related to axis aligned lines as well as
acting as a convienent container for them. In this context, an axis
aligned line is a two-dimensional line that is defined by an axis and
length on that axis, rather than two points. When working with two lines
defined as such that have the same axis, many calculations are
simplified.

Note

Though it requires the same amount of memory as a simple representation of
a 2 dimensional line (4 numerics), it cannot describe all types of lines.
All lines that can be defined this way intersect (0, 0).

Note

min and max are referring to nearness to negative and positive infinity,
respectively. The absolute value of min may be larger than that of max.

Note

AxisAlignedLines are an intermediary operation, so offsets should be baked
into them.

	Variables:	
	axis (pygorithm.geometry.vector2.Vector2) – the axis this line is on

	min (numbers.Number) – the point closest to negative infinity

	max (numbers.Number) – the point closest to positive infinity

	
__init__(axis, point1, point2)

	Construct an axis aligned line with the appropriate min and max.

	Parameters:	
	axis (pygorithm.geometry.vector2.Vector2) – axis this line is on (for bookkeeping only, may be None)

	point1 (numbers.Number) – one point on this line

	point2 (numbers.Number) – a different point on this line

	
static intersects(line1, line2)

	Determine if the two lines intersect

Determine if the two lines are touching, if they are overlapping, or if
they are disjoint. Lines are touching if they share only one end point,
whereas they are overlapping if they share infinitely many points.

Note

It is rarely faster to check intersection before finding intersection if
you will need the minimum translation vector, since they do mostly
the same operations.

Tip

This will never return True, True

	Parameters:	
	line1 (pygorithm.geometry.axisall.AxisAlignedLine) – the first line

	line2 (pygorithm.geometry.axisall.AxisAlignedLine) – the second line

	Returns:	(touching, overlapping)

	Return type:	(bool, bool)

	
static find_intersection(line1, line2)

	Calculate the MTV between line1 and line2 to move line1

Determine if the two lines are touching and/or overlapping and then
returns the minimum translation vector to move line 1 along axis. If the
result is negative, it means line 1 should be moved in the opposite
direction of the axis by the magnitude of the result.

Returns true, (None, touch_point_numeric, touch_point_numeric) if the lines are touching
and not overlapping.

Note

Ensure your program correctly handles true, (None, numeric, numeric)

	Parameters:	
	line1 (pygorithm.geometry.axisall.AxisAlignedLine) – the first line

	line2 (pygorithm.geometry.axisall.AxisAlignedLine) – the second line

	Returns:	(touching, (mtv against 1, intersection min, intersection max))

	Return type:	(bool, (numbers.Number or None, numbers.Number, numbers.Number) or None)

	
static contains_point(line, point)

	Determine if the line contains the specified point.

The point must be defined the same way as min and max.

Tip

It is not possible for both returned booleans to be True.

	Parameters:	
	line (pygorithm.geometry.axisall.AxisAlignedLine) – the line

	point (numbers.Number) – the point

	Returns:	(if the point is an edge of the line, if the point is contained by the line)

	Return type:	(bool, bool)

	
__repr__()

	Create an unambiguous representation of this axis aligned
line.

Example:

from pygorithm.geometry import axisall

aal = axisall.AxisAlignedLine(None, 3, 5)

prints AxisAlignedLine(axis=None, min=3, max=5)
print(repr(aal))

	Returns:	un-ambiguous representation of this line

	Return type:	string

	
__str__()

	Create a human-readable representation of this axis aligned line.

Example:

from pygorithm.geometry import axisall

aal = axisall.AxisAlignedLine(None, 0.7071234, 0.7071234)

prints axisall(along None from 0.707 to 0.707)
print(aal)

	Returns:	human-readable representation of this line

	Return type:	string

	
__weakref__

	list of weak references to the object (if defined)

Concave Polygon

	
class pygorithm.geometry.polygon2.Polygon2(points, suppress_errors=False)

	Define a concave polygon defined by a list of points such that each
adjacent pair of points form a line, the line from the last point to
the first point form a line, and the lines formed from the smaller
index to the larger index will walk clockwise around the polygon.

Note

Polygons should be used as if they were completely immutable to
ensure correctness. All attributes of Polygon2 can be reconstructed
from the points array, and thus cannot be changed on their own and
must be recalculated if there were any changes to points.

Note

To reduce unnecessary recalculations, Polygons notably do not have
an easily modifiable position. However, where relevant, the class
methods will accept offsets to the polygons. In all of these cases
the offset may be None for a minor performance improvement.

Note

Unfortunately, operations on rotated polygons require recalculating
the polygon based on its rotated points. This should be avoided
unless necessary through the use of Axis-Aligned Bounding Boxes
and similar tools.

Caution

The length of normals
is not necessarily the same as
points or
lines. It is only
guarranteed to have no two vectors that are the same or opposite
directions, and contain either the vector in the same direction or opposite
direction of the normal vector for every line in the polygon.

	Variables:	
	points (list of pygorithm.geometry.vector2.Vector2) – the ordered list of points on this polygon

	lines (list of pygorithm.geometry.line2.Line2) – the ordered list of lines on this polygon

	normals (list of pygorithm.geometry.vector2.Vector2) – the unordered list of unique normals on this polygon

	center (pygorithm.geometry.vector2.Vector2) – the center of this polygon when unshifted.

	
__init__(points, suppress_errors=False)

	Create a new polygon from the set of points

Caution

A significant amount of calculation is performed when creating
a polygon. These should be reused whenever possible. This cost
can be alleviated somewhat by suppressing certain expensive
sanity checks, but the polygon can behave very unexpectedly
(and potentially without explicit errors) if the errors are
suppressed.

The center of the polygon is calculated as the average of the points.

The lines of the polygon are constructed using line2.

The normals of the lines are calculated using line2.

A simple linear search is done to check for repeated points.

The area is calculated to check for clockwise order using the
Shoelace Formula <https://en.wikipedia.org/wiki/Shoelace_formula>

The polygon is proven to be convex by ensuring the cross product of
the line from the point to previous point and point to next point is
positive or 0, for all points.

	Parameters:	
	points (list of pygorithm.geometry.vector2.Vector2 or list of (numbers.Number, numbers.Number)) – the ordered set of points on this polygon

	suppress_errors (bool) – True to not do somewhat expensive sanity checks

	Raises:	
	ValueError – if there are less than 3 points (not suppressable)

	ValueError – if there are any repeated points (suppressable)

	ValueError – if the points are not clockwise oriented (suppressable)

	ValueError – if the polygon is not convex (suppressable)

	
classmethod from_regular(sides, length, start_rads=None, start_degs=None, center=None)

	Create a new regular polygon.

Hint

If no rotation is specified there is always a point at (length, 0)

If no center is specified, the center will be calculated such that
all the vertexes positive and the bounding box includes (0, 0). This
operation requires O(n) time (where n is the number if sides)

May specify the angle of the first point. For example, if the coordinate
system is x to the right and y upward, then if the starting offset is 0
then the first point will be at the right and the next point counter-clockwise.

This would make for the regular quad (sides=4) to look like a diamond. To make
the bottom side a square, the whole polygon needs to be rotated 45 degrees, like
so:

from pygorithm.geometry import (vector2, polygon2)
import math

This is a diamond shape (rotated square) (0 degree rotation assumed)
diamond = polygon2.Polygon2.from_regular(4, 1)

This is a flat square
square = polygon2.Polygon2.from_regular(4, 1, start_degs = 45)

Creating a flat square with radians
square2 = polygon2.Polygon2.from_regular(4, 1, math.pi / 4)

Uses the definition of a regular polygon <https://en.wikipedia.org/wiki/Regular_polygon>
to find the angle between each vertex in the polygon. Then converts the side
length to circumradius using the formula explained here <http://mathworld.wolfram.com/RegularPolygon.html>

Finally, each vertex is found using <radius * cos(angle), radius * sin(angle)>

If the center is not specified, the minimum of the bounding box of the
polygon is calculated while the vertices are being found, and the inverse
of that value is offset to the rest of the points in the polygon.

	Parameters:	
	sides (numbers.Number) – the number of sides in the polygon

	length (numbers.Number) – the length of any side of the polygon

	start_rads (numbers.Number or None) – the starting radians or None

	start_degs (numbers.Number or None) – the starting degrees or None

	center (pygorithm.geometry.vector2.Vector2) – the center of the polygon

	Returns:	the new regular polygon

	Return type:	pygorithm.geometry.polygon2.Polygon2

	Raises:	
	ValueError – if sides < 3 or length <= 0

	ValueError – if start_rads is not None and start_degs is not None

	
classmethod from_rotated(original, rotation, rotation_degrees=None)

	Create a regular polygon that is a rotation of
a different polygon.

The rotation must be in radians, or null and rotation_degrees
must be specified. Positive rotations are clockwise.

Examples:

from pygorithm.goemetry import (vector2, polygon2)
import math

poly = polygon2.Polygon2.from_regular(4, 1)

the following are equivalent (within rounding)
rotated1 = polygon2.Polygon2.from_rotated(poly, math.pi / 4)
rotated2 = polygon2.Polygon2.from_rotated(poly, None, 45)

Uses the 2-d rotation matrix <https://en.wikipedia.org/wiki/Rotation_matrix>
to rotate each point.

	Parameters:	
	original (pygorithm.geometry.polygon2.Polygon2) – the polygon to rotate

	rotation (numbers.Number) – the rotation in radians or None

	rotation_degrees (numbers.Number) – the rotation in degrees or None

	Returns:	the rotated polygon

	Return type:	pygorithm.geometry.polygon2.Polygon2

	Raises:	
	ValueError – if rotation is not None and rotation_degrees is not None

	ValueError – if rotation is None and rotation_degrees is None

	
area

	Get the area of this polygon. Lazily initialized.

Uses the Shoelace Formula <https://en.wikipedia.org/wiki/Shoelace_formula> to
calculate the signed area, allowing this to also test for correct polygon
orientation.

	Returns:	area of this polygon

	Return type:	numbers.Number

	Raises:	ValueError – if the polygon is not in clockwise order

	
static project_onto_axis(polygon, offset, axis)

	Find the projection of the polygon along the axis.

Uses the dot product <https://en.wikipedia.org/wiki/Dot_product>
of each point on the polygon to project those points onto the axis,
and then finds the extremes of the projection.

	Parameters:	
	polygon (pygorithm.geometry.polygon2.Polygon2) – the polygon to project

	offset (pygorithm.geometry.vector2.Vector2) – the offset of the polygon

	axis (pygorithm.geometry.vector2.Vector2) – the axis to project onto

	Returns:	the projection of the polygon along the axis

	Return type:	pygorithm.geometry.axisall.AxisAlignedLine

	
static contains_point(polygon, offset, point)

	Determine if the polygon at offset contains point.

Distinguish between points that are on the edge of the polygon and
points that are completely contained by the polygon.

Tip

This can never return True, True

This finds the cross product of this point and the two points comprising
every line on this polygon. If any are 0, this is an edge. Otherwise,
they must all be negative (when traversed clockwise).

	Parameters:	
	polygon (pygorithm.geometry.polygon2.Polygon2) – the polygon

	offset (pygorithm.geometry.vector2.Vector2 or None) – the offset of the polygon

	point (pygorithm.geometry.vector2.Vector2) – the point to check

	Returns:	on edge, contained

	Return type:	bool, bool

	
static find_intersection(poly1, poly2, offset1, offset2, find_mtv=True)

	Find if the polygons are intersecting and how to resolve it.

Distinguish between polygons that are sharing 1 point or a single line
(touching) as opposed to polygons that are sharing a 2-dimensional
amount of space.

The resulting MTV should be applied to the first polygon (or its offset),
or its negation can be applied to the second polygon (or its offset).

The MTV will be non-null if overlapping is True and find_mtv is True.

Note

There is only a minor performance improvement from setting find_mtv to
False. It is rarely an improvement to first check without finding
mtv and then to find the mtv.

Caution

The first value in the mtv could be negative (used to inverse the direction
of the axis)

This uses the `Seperating Axis Theorem <http://www.dyn4j.org/2010/01/sat/> to
calculate intersection.

	Parameters:	
	poly1 (pygorithm.geometry.polygon2.Polygon2) – the first polygon

	poly2 (pygorithm.geometry.polygon2.Polygon2) – the second polygon

	offset1 (pygorithm.geometry.vector2.Vector2 or None) – the offset of the first polygon

	offset2 (pygorithm.geometry.vector2.Vector2 or None) – the offset of the second polygon

	find_mtv (bool) – if False, the mtv is always None and there is a small performance improvement

	Returns:	(touching, overlapping, (mtv distance, mtv axis))

	Return type:	(bool, bool, (numbers.Number, pygorithm.geometry.vector2.Vector2) or None)

	
__repr__()

	Creates an unambiguous representation of this polygon, only
showing the list of points.

	Returns:	unambiguous representation of this polygon

	Return type:	string

	
__str__()

	Creates a human-readable representation of this polygon and
includes a link to visualize it

	Returns:	human-readable representation

	Return type:	string

	
__weakref__

	list of weak references to the object (if defined)

Axis-Aligned Rectangle

	
class pygorithm.geometry.rect2.Rect2(width, height, mincorner=None)

	A rectangle. Uses SAT collision against polygons and
broad-phase collision against other rectangles.

Rectangles are fast to construct and have very fast
rectangle-rectangle collision detection.

Rect2 is designed to have almost exactly the opposite performance
characteristics as Polygon2 when doing collision against
Polygon2s: Fast to construct and complex on first call with
many operations incurring expensive recalculations.

Caution

Collision detection against a polygon with cause
initialization of the polygon representation of a
rectangle. This has the noticeable performance
characteristics that are seen whenever a polygon
is constructed (see Polygon2).
This operation recurrs only if width and height
were modified.

	Variables:	mincorner (pygorithm.geometry.vector2.Vector2) – the position of this polygon

	
__init__(width, height, mincorner=None)

	Create a new rectangle of width and height.

If mincorner is None, the origin is assumed.

	Parameters:	
	width (numbers.Number) – width of this rect

	height (numbers.Number) – height of this rect

	mincorner (pygorithm.geometry.vector2.Vector2 or None) – the position of this rect

	Raises:	ValueError – if width or height are not strictly positive

	
polygon

	Get the polygon representation of this rectangle, without
the offset. Lazily initialized and up-to-date with width
and height.

Caution

This does not include the mincorner
(which should be passed as offset for polygon operations)

	Returns:	polygon representation of this rectangle

	Return type:	pygorithm.geometry.polygon2.Polygon2

	
width

	Get or set the width of this rect.

Caution

Setting the width of the rectangle will remove the polygon
caching required for rectangle-polygon collision.

	Returns:	width of this rect

	Return type:	numbers.Number

	Raises:	ValueError – if trying to set width <= 1e-07

	
height

	Get or set the height of this rect

Caution

Setting the height of the rectangle will remove the cached
operations required for rectangle-polygon collision.

	Returns:	height of this rect

	Return type:	numbers.Number

	Raises:	ValueError – if trying to set height <= 1e-07

	
area

	Get the area of this rect

	Returns:	area of this rect

	Return type:	numbers.Number

	
static project_onto_axis(rect, axis)

	Project the rect onto the specified axis.

Tip

This function is extremely fast for vertical or
horizontal axises.

	Parameters:	
	rect (pygorithm.geometry.rect2.Rect2) – the rect to project

	axis (pygorithm.geometry.vector2.Vector2) – the axis to project onto (normalized)

	Returns:	the projection of the rect along axis

	Return type:	pygorithm.geometry.axisall.AxisAlignedLine

	
static contains_point(rect, point)

	Determine if the rect contains the point

Distinguish between points that are on the edge of the
rect and those that are not.

Tip

This will never return True, True

	Parameters:	
	rect (pygorithm.geometry.rect2.Rect2) – the rect

	point (pygorithm.geometry.vector2.Vector2) – the point

	Returns:	point on edge, point inside

	Return type:	bool, bool

	
classmethod _find_intersection_rects(rect1, rect2, find_mtv=True)

	Find the intersection between two rectangles.

Not intended for direct use. See
find_intersection()

	Parameters:	
	rect1 (pygorithm.geometry.rect2.Rect2) – first rectangle

	rect2 (pygorithm.geometry.rect2.Rect2) – second rectangle

	find_mtv (bool) – False to never find mtv (may allow small performance improvement)

	Returns:	(touching, overlapping, (mtv distance, mtv axis))

	Return type:	(bool, bool, (numbers.Number, pygorithm.geometry.vector2.Vector2) or None)

	
classmethod _find_intersection_rect_poly(rect, poly, offset, find_mtv=True)

	Find the intersection between a rect and polygon.

Not intended for direct use. See
find_intersection()

	Parameters:	
	rect (pygorithm.geometry.rect2.Rect2) – rectangle

	poly (pygorithm.geometry.polygon2.Polygon2) – polygon

	offset (pygorithm.geometry.vector2.Vector2) – offset for the polygon

	find_mtv (bool) – False to never find mtv (may allow small performance improvement)

	Returns:	(touching, overlapping, (mtv distance, mtv axis))

	Return type:	(bool, bool, (numbers.Number, pygorithm.geometry.vector2.Vector2) or None)

	
__weakref__

	list of weak references to the object (if defined)

	
classmethod _find_intersection_poly_rect(poly, offset, rect, find_mtv=True)

	Find the intersection between a polygon and rect.

Not intended for direct use. See
find_intersection()

	Parameters:	
	poly (pygorithm.geometry.polygon2.Polygon2) – polygon

	offset (pygorithm.geometry.vector2.Vector2) – offset for the polygon

	rect (pygorithm.geometry.rect2.Rect2) – rectangle

	find_mtv (bool) – False to never find mtv (may allow small performance improvement)

	Returns:	(touching, overlapping, (mtv distance, mtv axis))

	Return type:	(bool, bool, (numbers.Number, pygorithm.geometry.vector2.Vector2) or None)

	
classmethod find_intersection(*args, **kwargs)

	Determine the state of intersection between a rect and a
polygon.

For Rect-Polygon intersection:

Must be passed in 3 arguments - a Rect2,
a Polygon2, and a
Vector2. The vector must come immediately
after the polygon, but the rect can be either the first or last unnamed argument.
If it is the first argument, the mtv is against the rectangle. If it is the last
argument, the mtv is against the polygon.

For Rect-Rect intersection:

Must be passed in 2 arguments (both rects).

Note

The first argument is checked with isinstance(arg, Rect2). If this is
False, the first argument is assumed to be a Polygon2. If you want to
use a compatible rectangle class for which this check would fail, you
can call
_find_intersection_rect_poly()
directly or pass the polygon first and invert the resulting mtv (if
one is found). If two unnamed arguments are provided, they are assumed
to be both rects without further checks.

Examples:

from pygorithm.geometry import (vector2, polygon2, rect2)

octogon = polygon2.Polygon2.from_regular(8, 1)
oct_offset = vector2.Vector2(0.5, 0)

unit_square = rect2.Rect2(1, 1)

find mtv for square against octogon
touching, overlapping, mtv = rect2.Rect2.find_intersection(unit_square, octogon, oct_offset)

find mtv for octogon against square
touching, overlapping, mtv = rect2.Rect2.find_intersection(octogon, oct_offset, unit_square)

find intersection but skip mtv (two options)
touching, overlapping, alwaysNone = rect2.Rect2.find_intersection(unit_square, octogon, oct_offset, find_mtv=False)
touching, overlapping, alwaysNone = rect2.Rect2.find_intersection(octogon, oct_offset, unit_square, find_mtv=False)

big_square = rect2.Rect2(2, 2, vector2.Vector2(-1.5, 0))

find mtv for square against big square
touching, overlapping, mtv = rect2.Rect2.find_intersection(unit_square, big_square)

find mtv for big square against square
touching, overlapping, mtv = rect2.Rect2.find_intersection(big_square, unit_square)

	Parameters:	
	find_mtv (bool) – if mtv should be found where possible (default True)

	args (list) – 2 arguments for rect-rect, 3 arguments for rect-polygon (see above)

	Returns:	(touching, overlapping, (mtv distance, mtv axis))

	Return type:	(bool, bool, (numbers.Number, pygorithm.geometry.vector2.Vector2) or None)

	
__repr__()

	Create an unambiguous representation of this rectangle.

Example:

from pygorithm.geometry import (vector2, rect2)

unit_square = rect2.Rect2(1, 1, vector2.Vector2(3, 4))

prints rect2(width=1, height=1, mincorner=vector2(x=3, y=4))
print(repr(unit_square))

	Returns:	unambiguous representation of this rectangle

	Return type:	string

	
__str__()

	Create a human readable representation of this rectangle

Example:

from pygorithm.geometry import (vector2, rect2)

unit_square = rect2.Rect2(1, 1, vector2.Vector2(3, 4))
ugly_rect = rect2.Rect2(0.7071234, 0.7079876, vector2.Vector2(0.56789123, 0.876543))

prints rect(1x1 at <3, 4>)
print(str(unit_square))

prints rect(0.707x0.708 at <0.568, 0.877>)
print(str(ugly_rect))

	Returns:	human-readable representation of this rectangle

	Return type:	string

Extrapolated Intersection

Author: Timothy Moore
Created On: 4th September 2017

Contains various approaches to determining if a polygon will
intersect another polygon as one or both polygons go along
a a single direction at a constant speed.

This problem could be thought of as one of extrapolation -
given these initial conditions, extrapolate to determine
if intersections will occur.

Note

Touching is not considered intersecting in this module, unless otherwise
stated. Touching is determined using math.isclose

	
pygorithm.geometry.extrapolated_intersection.calculate_one_moving_point_and_one_stationary_line(point, velocity, line, offset)

	Determine if the point moving at velocity will intersect the line.

The line is positioned at offset. Given a moving point and line segment,
determine if the point will ever intersect the line segment.

Caution

Points touching at the start are considered to be intersection. This
is because there is no way to get the “direction” of a stationary
point like you can a line or polygon.

	Parameters:	
	point (pygorithm.geometry.vector2.Vector2) – the starting location of the point

	velocity (pygorithm.geometry.vector2.Vector2) – the velocity of the point

	line (pygorithm.geometry.line2.Line2) – the geometry of the stationary line

	offset (pygorithm.geometry.vector2.Vector2) – the offset of the line

	Returns:	if the point will intersect the line, distance until intersection

	Return type:	bool, numbers.Number or None

	
pygorithm.geometry.extrapolated_intersection.calculate_one_moving_line_and_one_stationary_line(line1, offset1, velocity1, _line2, offset2)

	Determine if the moving line will intersect the stationary line.

Given two line segments, one moving and one not, determine if they will ever
intersect.

	Parameters:	
	line1 (pygorithm.geometry.line2.Line2) – the geometry of the moving line

	offset1 (pygorithm.geometry.vector2.Vector2) – the starting location of the moving line

	velocity1 (pygorithm.geometry.vector2.Vector2) – the velocity of the moving line

	_line2 (pygorithm.geometry.line2.Line2) – the geometry of the second line

	offset2 (pygorithm.geometry.vector2.Vector2) – the location of the second line

	Returns:	if the lines will ever intersect, distance until intersection

	Return type:	bool, numbers.Number or None

	
pygorithm.geometry.extrapolated_intersection.calculate_one_moving_and_one_stationary(poly1, poly1_offset, poly1_velocity, poly2, poly2_offset)

	Determine if the moving polygon will intersect the stationary polygon.

This is the simplest question. Given two polygons, one moving and one not,
determine if the two polygons will ever intersect (assuming they maintain
constant velocity).

	Parameters:	
	poly1 (pygorithm.geometry.polygon2.Polygon2) – the geometry of the polygon that is moving

	poly1_offset (pygorithm.geometry.vector2.Vector2) – the starting location of the moving polygon

	poly1_velocity (pygorithm.geometry.vector2.Vector2) – the velocity of the moving polygon

	poly2 (pygorithm.geometry.polygon2.Polygon2) – the geometry of the stationary polygon

	poly2_offset (pygorithm.geometry.vector2.Vector2) – the offset of the stationary polygon

	Returns:	if they will intersect

	Return type:	bool

	
pygorithm.geometry.extrapolated_intersection.calculate_one_moving_one_stationary_distancelimit(poly1, poly1_offset, poly1_velocity, poly2, poly2_offset, max_distance)

	Determine if the moving polygon will intersect the stationary polygon
within some distance.

This is a step up, and very similar to the actual problem many any-angle
pathfinding algorithms run into. Given two polygons, 1 moving and 1
stationary, determine if the first polygon will intersect the second
polygon before moving a specified total distance.

	Parameters:	
	poly1 (pygorithm.geometry.polygon2.Polygon2) – the geometry of the polygon that is moving

	poly1_offset (pygorithm.geometry.vector2.Vector2) – the starting location of the moving polygon

	poly1_velocity (pygorithm.geometry.vector2.Vector2) – the velocity of the moving polygon

	poly2 (pygorithm.geometry.polygon2.Polygon2) – the geometry of the stationary polygon

	poly2_offset (pygorithm.geometry.vector2.Vector2) – the offset of the stationary polygon

	max_distance (numbers.Number) – the max distance that poly1 can go

	Returns:	if they will intersect

	Return type:	bool

	
pygorithm.geometry.extrapolated_intersection.calculate_one_moving_one_stationary_along_path(poly1, poly1_start, poly1_end, poly2, poly2_offset)

	Determine if the moving polygon will intersect the stationary polygon as
it moves from the start to the end.

This is a rewording of calculate_one_moving_one_stationary_distancelimit()
that is more common. Given two polygons, 1 moving and 1 stationary, where the
moving polygon is going at some speed from one point to another, determine if
the two polygons will intersect.

	Parameters:	
	poly1 (pygorithm.geometry.polygon2.Polygon2) – the geometry of the polygon that is moving

	poly1_start (pygorithm.geometry.vector2.Vector2) – where the moving polygon begins moving from

	poly1_end (pygorithm.geometry.vector2.Vector2) – where the moving polygon stops moving

	poly2 (pygorithm.geometry.polygon2.Polygon2) – the geometry of the stationary polygon

	poly2_offset (pygorithm.geometry.vector2.Vector2) – the location of the second polygon

	Returns:	if they will intersect

	Return type:	bool

	
pygorithm.geometry.extrapolated_intersection.calculate_one_moving_many_stationary(poly1, poly1_offset, poly1_velocity, other_poly_offset_tuples)

	Determine if the moving polygon will intersect anything as it
moves at a constant direction and speed forever.

This is the simplest arrangement of this problem with a collection
of stationary polygons. Given many polygons of which 1 is moving,
determine if the moving polygon intersects the other polygons now or at
some point in the future if it moves at some constant direction and
speed forever.

This does not verify the stationary polygons are not intersecting.

	Parameters:	
	poly1 (pygorithm.geometry.polygon2.Polygon2) – the geometry of the polygon that is moving

	poly1_offset (pygorithm.geometry.vector2.Vector2) – the starting location of the moving polygon

	poly1_velocity (pygorithm.geometry.vector2.Vector2) – the velocity of the moving polygon

	other_poly_offset_tuples (list of (pygorithm.geometry.polygon2.Polygon2, pygorithm.geometry.vector2.Vector2)) – list of (polygon, offset) of the stationary polygons

	Returns:	if an intersection will occur

	Return type:	bool

	
pygorithm.geometry.extrapolated_intersection.calculate_one_moving_many_stationary_distancelimit(poly1, poly1_offset, poly1_velocity, max_distance, other_poly_offset_tuples)

	Determine if the moving polygon will intersect anyything as
it moves in a constant direction and speed for a certain
distance.

This does not verify the stationary polygons are not intersecting.

	Parameters:	
	poly1 (pygorithm.geometry.polygon2.Polygon2) – the geometry of the polygon that is moving

	poly1_offset (pygorithm.geometry.vector2.Vector2) – the starting location of the moving polygon

	poly1_velocity (pygorithm.geometry.vector2.Vector2) – the velocity of the moving polygon

	max_distance (numbers.Number) – the max distance the polygon will go

	other_poly_offset_tuples (list of (pygorithm.geometry.polygon2.Polygon2, pygorithm.geometry.vector2.Vector2)) – list of (polygon, offset) of the stationary polygons

	Returns:	if an intersection will occur

	Return type:	bool

	
pygorithm.geometry.extrapolated_intersection.calculate_one_moving_many_stationary_along_path(poly1, poly1_start, poly1_end, other_poly_offset_tuples)

	Determine if a polygon that moves from one point to another
will intersect anything.

This is the question that the Theta* family of pathfinding
algorithms require. It is simply a rewording of
calculate_one_moving_many_stationary_distancelimit()

This does not verify the stationary polygons are not intersecting.

	Parameters:	
	poly1 (pygorithm.geometry.polygon2.Polygon2) – the geometry of the polygon that is moving

	poly1_start (pygorithm.geometry.vector2.Vector2) – where the polygon begins moving from

	poly1_end (pygorithm.geometry.vector2.Vector2) – where the polygon stops moving at

	other_poly_offset_tuples (list of (pygorithm.geometry.polygon2.Polygon2, pygorithm.geometry.vector2.Vector2)) – list of (polygon, offset) of the stationary polygons

	Returns:	if an intersection will occur

	Return type:	bool

	
pygorithm.geometry.extrapolated_intersection.calculate_two_moving(poly1, poly1_offset, poly1_vel, poly2, poly2_offset, poly2_vel)

	Determine if two moving polygons will intersect at some point.

This is the simplest question when there are multiple moving polygons.
Given two polygons moving at a constant velocity and direction forever,
determine if an intersection will occur.

It should be possible for the reader to extrapolate from this function
and the process for stationary polygons to create similar functions to
above where all or some polygons are moving.

	Parameters:	
	poly1 (pygorithm.geometry.polygon2.Polygon2) – the first polygon

	poly1_offset (pygorithm.geometry.vector2.Vector2) – where the first polygon starts at

	poly1_vel (pygorithm.geometry.vector2.Vector2) – the velocity of the first polygon

	poly2 (pygorithm.geometry.polygon2.Polygon2) – the second polygon

	poly2_offset (pygorithm.geometry.vector2.Vector2) – where the second polygon starts at

	poly2_vel (pygorithm.geometry.vector2.Vector2) – the velocity of the second polygon

	Returns:	if an intersectino will occur

	Return type:	bool

Greedy Algorithms

A place for implementation of greedy algorithms

Features

	To see all the available functions in a module, you can just type help() with the module name as argument. For example,

>>> from pygorithm import greedy_algorithm
>>> help(greedy_algorithm)
 Help on package pygorithm.greedy_algorithm in pygorithm:

 NAME
 pygorithm.greedy_algorithm - Collection for greedy algorithms

 PACKAGE CONTENTS
 activity_selection
 fractional_knapsack

 DATA
 __all__ = ['fractional_knapsack', 'activity_selection']

Activity Selection Problem

	Functions and their uses

Author: OMKAR PATHAK
Created On: 26th August 2017

	
pygorithm.greedy_algorithm.activity_selection.activity_selection(start_times, finish_times)

	The activity selection problem is a combinatorial optimization problem concerning the selection of
non-conflicting activities to perform within a given time frame, given a set of activities each marked
by a start time (si) and finish time (fi). The problem is to select the maximum number of activities
that can be performed by a single person or machine, assuming that a person can only work on a single
activity at a time.

	Parameters:	
	start_times – An array that contains start time of all activities

	finish_times – An array that conatins finish time of all activities

	
pygorithm.greedy_algorithm.activity_selection.get_code()

	returns the code for the activity_selection function

Fractional Knapsack

	Functions and their uses

Author: SHARAD BHAT
Created On: 22nd August 2017

	
pygorithm.greedy_algorithm.fractional_knapsack.knapsack(w, item_values, item_weights)

	The knapsack problem or rucksack problem is a problem in combinatorial optimization: Given a set of
items, each with a weight and a value, determine the number of each item to include in a collection so
that the total weight is less than or equal to a given limit and the total value is as large as
possible. It derives its name from the problem faced by someone who is constrained by a fixed-size
knapsack and must fill it with the most valuable items.

	Parameters:	
	w – maximum weight capacity

	item_values – a list of values of items in the knapsack

	item_weights – a list of weights of items in the knapsack

	
pygorithm.greedy_algorithm.fractional_knapsack.get_code()

	returns the code for the knapsack function

Math

Some of the mathematical algorithms and their implementations

Quick Start Guide

import the required math
from pygorithm.math import lcm

find the lcm for all the elements in the list
ans = lcm.lcm([3, 12, 16])

#print the result
print(ans)

Features

	
	Algorithms available:

	
	LCM (lcm)

	Sieve of Eratostenes (sieve_of_eratosthenes)

	Factorial

	Binary To decimal conversion

	Decimal to binary conversion

	Hex To decimal conversion

	Decimal to hex conversion

	To see all the available functions in a module there is a modules() function available. For example,

>>> from pygorithm.math import modules
>>> modules.modules()
['lcm', 'sieve_of_eratosthenes']

	Get the code used for any of the algorithm

from pygorithm.math import lcm

for printing the source code of LCM function
print(lcm.get_code())

LCM

	Functions and their uses

	
lcm.lcm(List)

	

	List : list or array of which LCM is to be found

	Return Value : returns the integer value of LCM

	
lcm.get_code()

	

	Return Value : returns the code for the lcm.lcm() function

Sieve of Eratostenes

	Functions and their uses

	
sieve_of_eratostenes.sieve_of_eratostenes(n)

	

	n : upper limit upto which prime numbers are to be found

	Return Value : returns the list of all primes upto n

	
sieve_of_eratostenes.get_code()

	

	Return Value : returns the code for the sieve_of_eratostenes.sieve_of_eratostenes() function

Factorial

	Functions and their uses

	
factorial.factorial(number)

	

	number : integer number of which factorial is to be found

	Return Value : returns the integer of factorial of the number

	
factorial.get_code()

	

	Return Value : returns the code for the factorial.factorial() function

Conversion

	Functions and their uses

	
conversion.decimal_to_binary(number)

	

	number : decimal number in string or integer format

	Return Value : returns the string of equivalent binary number

	
conversion.binary_to_decimal(number)

	

	number : binary number in string or integer format

	Return Value : returns the integer of equivalent decimal number

	
conversion.decimal_to_hex(number)

	

	number : decimal number in string or integer format

	Return Value : returns the string of equivalent hex number

	
conversion.hex_to_decimal(number)

	

	number : hex number in string or integer format

	Return Value : returns the integer of equivalent decimal number

Path Finding Algorithms

Some pathfinding algorithms and their implementations

Quick Start Guide

import the required pathing algorithm
from pygorithm.pathing import dijkstra

import a graph data structure
from pygorithm.data_structures import graph

initialize the graph with nodes from (0, 0) to (4, 4)
with weight corresponding to distance (orthogonal
is 1, diagonal is sqrt(2))
my_graph = graph.WeightedUndirectedGraph()
my_graph.gridify(5, 1)

make the graph more interesting by removing along the
x=2 column except for (2,4)
my_graph.remove_edge((2, 0))
my_graph.remove_edge((2, 1))
my_graph.remove_edge((2, 2))
my_graph.remove_edge((2, 3))

calculate a path
my_path = dijkstra.find_path(my_graph, (0, 0), (3, 0))

print path
print(' -> '.join(my_path))
(0, 0) -> (1, 1) -> (0, 2) -> (1, 3) -> (2, 4) -> (3, 3) -> (3, 2) -> (3, 1) -> (3, 0)

Features

	
	Algorithms available:

	
	Dijkstra (dijkstra)

	Unidirectional AStar (astar)

	BiDirectional AStar (astar)

	To see all the available functions in a module there is a modules() function available. For example,

>>> from pygorithm.pathfinding import modules
>>> modules.modules()
['dijkstra', 'astar']

	Get the code used for any of the algorithm

from pygorithm.pathing import dijkstra

for printing the source code of Dijkstra object
print(dijkstra.Dijikstra.get_code())

Dijkstra

	Functions and their uses

	
dijkstra.Dijkstra.find_path(pygorithm.data_structures.WeightedUndirectedGraph, vertex, vertex)

	

	pygorithm.data_structures.WeightedUndirectedGraph : acts like an object with graph (see WeightedUndirectedGraph)

	vertex : any hashable type for the start of the path

	vertex : any hashable type for the end of the path

	Return Value : returns a List of vertexes (of the same type as the graph) starting with from and going to to. This algorithm does not respect weights.

	
dijkstra.get_code()

	

	Return Value : returns the code for the Dijkstra object

Unidirectional AStar

	Functions and their uses

	
astar.OneDirectionalAStar.find_path(pygorithm.data_structures.WeightedUndirectedGraph, vertex, vertex, function)

	

	pygorithm.data_structures.WeightedUndirectedGraph : acts like an object with graph and get_edge_weight (see WeightedUndirectedGraph)

	vertex : any hashable type for the start of the path

	vertex : any hashable type for the end of the path

	function : function(graph, vertex, vertex) returns numeric - a heuristic function for distance between two vertices

	Return Value : returns a List of vertexes (of the same type of the graph) starting from from and going to to. This algorithm respects weights, but is only guarranteed to be optimal if the heuristic is admissable. An admissable function will never overestimate the cost from one node to another (in other words, it is optimistic).

BiDirectional AStar

	Functions and their uses

	
astar.BiDirectionalAStar.find_path(pygorithm.data_structures.WeightedUndirectedGraph, vertex, vertex, function)

	

	pygorithm.data_structures.WeightedUndirectedGraph : acts like an object with graph and get_edge_weight (see WeightedUndirectedGraph)

	vertex : any hashable type for the start of the path

	vertex : any hashable type for the end of the path

	function : function(graph, vertex, vertex) returns numeric - a heuristic function for distance between two vertices

	Return Value : returns a List of vertexes (of the same type of the graph) starting from from and going to to. This algorithm respects weights, but is only guarranteed to be optimal if the heuristic is admissable. An admissable function will never overestimate the cost from one node to another (in other words, it is optimistic).

Searching

Learning searching algorithms easily!

Quick Start Guide

import the required searching algorithm
from pygorithm.searching import binary_search

my_list = [12, 4, 2, 14, 3, 7, 5]

pre-requisite for binary search is that the list should be sorted
my_list.sort()

to search an element in the above list
index = binary_search.search(my_list, 7)
print(index)

Features

	
	Searching algorithms available:

	
	Linear Search (linear_search)

	Binary Search (binary_search)

	Breadth First Search (breadth_first_search)

	Depth First Search (depth_first_search)

	To see all the available functions in a module, you can just type help() with the module name as argument. For example,

>>> from pygorithm import searching
>>> help(searching)
 Help on package pygorithm.searching in pygorithm:

 NAME
 pygorithm.searching - Collection of searching algorithms

 PACKAGE CONTENTS
 binary_search
 breadth_first_search
 depth_first_search
 linear_search
 modules
 quick_select

	For Searching:
Remember search() function in binary_search module takes two parameters as a sorted list and the target element to be searched.

import the required searching algorithm
from pygorithm.searching import binary_search

my_list = [12, 4, 2, 14, 3, 7, 5]

pre-requisite for binary search is that the list should be sorted
my_list.sort()

to search an element in the above list
index = binary_search.search(my_list, 7)
print(index)

	Get time complexities of all the searching algorithms

from pygorithm.searching import binary_search

for printing time complexities of binary_search
print(binary_search.time_complexities())

	Get the code used for any of the algorithm

from pygorithm.searching import binary_search

for printing the source code of bubble_sort
print(binary_search.get_code())

Binary Search

	Functions and their uses

	
binary_search.search(_list, target)

	

	_list : Sorted list in which the target is to be searched

	target : target to be searched in the list

	Return Value : returns the position (index) of the target if target found, else returns False

	
binary_search.time_complexities()

	

	Return Value : returns time complexities (Best, Average, Worst)

	
binary_search.get_code()

	

	Return Value : returns the code for the binary_search.search() function

Linear Search

	Functions and their uses

	
linear_search.search(_list, target)

	

	_list : the list in which item is to searched

	target : target to be searched in the list

	Return Value : returns the position (index) of the target if target found, else returns False

	
linear_search.time_complexities()

	

	Return value : returns time complexities (Best, Average, Worst)

	
linear_search.get_code()

	

	Return Value : returns the code for the linear_search.search() function

Breadth First Search

	Functions and their uses

	
breadth_first_search.search(graph, startVertex)

	

	graph : takes the graph data structures with edges and vertices

	startVertex : it tells the function the vertex to start with

	Return Value : returns the set of bfs for the graph

	
breadth_first_search.time_complexities()

	

	Return Value : returns time complexities

	
breadth_first_search.get_code()

	

	Return Value : returns the code for the breadth_first_search.search() function

Depth First Search

	Functions and their uses

	
breadth_first_search.search(graph, start, path)

	

	graph : takes the graph data structures with edges and vertices

	start : it tells the function the vertex to start with

	path : returns the list containing the required dfs

	Return Value : returns the list of dfs for the graph

	
breadth_first_search.time_complexities()

	

	Return Value : returns time complexities

	
breadth_first_search.get_code()

	

	Return Value : returns the code for the depth_first_search.search() function

Quick Select Search

	Functions and their uses

	
quick_select.search(array, n)

	

	array : an unsorted array

	n : nth number to be searched in the given array

	Return Value : returns the nth element

	
quick_select.time_complexities()

	

	Return Value : returns time complexities

	
quick_select.get_code()

	

	Return Value : returns the code for the quick_select.search() function

Interpolation Search

	Functions and their uses

	
interpolation_search.search(_list, target)

	

	_list : Sorted list in which the target is to be searched

	target : target to be searched in the list

	Return Value : returns the position (index) of the target if target found, else returns False

	
interpolation_search.time_complexities()

	

	Return Value : returns time complexities (Best, Average, Worst)

	
interpolation_search.get_code()

	

	Return Value : returns the code for the interpolation_search.search() function

Sorting

Just sort the way you want.

Quick Start Guide

import the required sort
from pygorithm.sorting import bubble_sort

my_list = [12, 4, 2, 14, 3, 7, 5]

to sort the _list
sorted_list = bubble_sort.sort(my_list)

Features

	To see all the available functions in a module, you can just type help() with the module name as argument. For example,

>>> from pygorithm import sorting
>>> help(sorting)
 Help on package pygorithm.sorting in pygorithm:

 NAME
 pygorithm.sorting - Collection of sorting methods

 PACKAGE CONTENTS
 bubble_sort
 bucket_sort
 counting_sort
 heap_sort
 insertion_sort
 merge_sort
 modules
 quick_sort
 selection_sort
 shell_sort

	For sorting:
Remember sort() function takes its parameter as a _list only.

import the required sort
from pygorithm.sorting import bubble_sort

my_list = [12, 4, 2, 14, 3, 7, 5]

to sort the _list
sorted_list = bubble_sort.sort(my_list)

	Get time complexities of all the sorting algorithms

from pygorithm.sorting import bubble_sort

for printing time complexities of bubble_sort
print(bubble_sort.time_complexities())

	Get the code used for any of the algorithm

from pygorithm.sorting import bubble_sort

for printing the source code of bubble_sort
print(bubble_sort.get_code())

Bubble Sort

	Functions and their uses

	
bubble_sort.sort(_list)

	

	_list : list or array to be sorted

	Return Value : returns the sorted list

	
bubble_sort.time_complexities()

	

	Return Value : returns time complexities (Best, Average, Worst)

	
bubble_sort.get_code()

	

	Return Value : returns the code for the bubble_sort.sort() function

	For improved Bubble sort

	
bubble_sort.improved_sort(_list)

	

	_list : list or array to be sorted

	Return Value : returns the sorted list

Bucket Sort

	Functions and their uses

	
bucket_sort.sort(_list, bucketSize)

	

	_list : list or array to be sorted

	bucketSize : size of the bucket. Default is 5

	Return Value : returns the sorted list

	
bucket_sort.time_complexities()

	

	Return Value : returns time complexities (Best, Average, Worst)

	
bucket_sort.get_code()

	

	Return Value : returns the code for the bucket_sort.sort() function

Counting Sort

	Functions and their uses

	
counting_sort.sort(_list)

	

	_list : list or array to be sorted

	Return Value : returns the sorted list

	
counting_sort.time_complexities()

	

	Return Value : returns time complexities (Best, Average, Worst)

	
counting_sort.get_code()

	

	Return Value : returns the code for the counting_sort.sort() function

Heap Sort

	Functions and their uses

	
heap_sort.sort(_list)

	

	_list : list or array to be sorted

	Return Value : returns the sorted list

	
heap_sort.time_complexities()

	

	Return Value : returns time complexities (Best, Average, Worst)

	
heap_sort.get_code()

	

	Return Value : returns the code for the heap_sort.sort() function

Insertion Sort

	Functions and their uses

	
insertion_sort.sort(_list)

	

	_list : list or array to be sorted

	Return Value : returns the sorted list

	
insertion_sort.time_complexities()

	

	Return Value : returns time complexities (Best, Average, Worst)

	
insertion_sort.get_code()

	

	Return Value : returns the code for the insertion_sort.sort() function

Merge Sort

	Functions and their uses

	
merge_sort.sort(_list)

	

	_list : list or array to be sorted

	Return Value : returns the sorted list

	
merge_sort.time_complexities()

	

	Return Value : returns time complexities (Best, Average, Worst)

	
merge_sort.get_code()

	

	Return Value : returns the code for the merge_sort.sort() function

Quick Sort

	Functions and their uses

	
quick_sort.sort(_list)

	

	_list : list or array to be sorted

	Return Value : returns the sorted list

	
quick_sort.time_complexities()

	

	Return Value : returns time complexities (Best, Average, Worst)

	
quick_sort.get_code()

	

	Return Value : returns the code for the quick_sort.sort() function

Selection Sort

	Functions and their uses

	
selection_sort.sort(_list)

	

	_list : list or array to be sorted

	Return Value : returns the sorted list

	
selection_sort.time_complexities()

	

	Return Value : returns time complexities (Best, Average, Worst)

	
selection_sort.get_code()

	

	Return Value : returns the code for the selection_sort.sort() function

Shell Sort

	Functions and their uses

	
shell_sort.sort(_list)

	

	_list : list or array to be sorted

	Return Value : returns the sorted list

	
shell_sort.time_complexities()

	

	Return Value : returns time complexities (Best, Average, Worst)

	
shell_sort.get_code()

	

	Return Value : returns the code for the shell_sort.sort() function

Strings

A place for implementation of string algorithms

Features

	To see all the available functions in a module, you can just type help() with the module name as argument. For example,

>>> from pygorithm import strings
>>> help(strings)
 Help on package pygorithm.strings in pygorithm:

 NAME
 pygorithm.strings - Collection of string methods and functions

 PACKAGE CONTENTS
 anagram
 isogram
 manacher_algorithm
 palindrome
 pangram

Anagram

	Functions and their uses

Author: OMKAR PATHAK
Created On: 17th August 2017

	
pygorithm.strings.anagram.is_anagram(word, _list)

	ANAGRAM
An anagram is direct word switch or word play,
the result of rearranging the letters of a word
or phrase to produce a new word or phrase, using
all the original letters exactly once we are taking
a word and a list. We return the anagrams of that
word from the given list and return the list of
anagrams else return empty list.

	Parameters:	
	word – word

	_list – list of words

	Returns:	anagrams

	
pygorithm.strings.anagram.get_code()

	returns the code for the is_anagram function
:return: source code

Isogram

	Functions and their uses

Author: OMKAR PATHAK
Created On: 17th August 2017

	
pygorithm.strings.isogram.is_isogram(word)

	An isogram (also known as a “nonpattern word”)
is a logological term for a word or phrase
without a repeating letter

	Parameters:	word – word to check

	Returns:	bool

	
pygorithm.strings.isogram.get_code()

	returns the code for the is_isogram function
:return: source code

Palindrome

	Functions and their uses

Author: OMKAR PATHAK
Created On: 17th August 2017

	
pygorithm.strings.palindrome.is_palindrome(string)

	Checks the string for palindrome

	Parameters:	string – string to check

	Returns:	true if string is a palindrome false if not

	
pygorithm.strings.palindrome.get_code()

	returns the code for the is_palindrome function
:return: source code

Pangram

	Functions and their uses

Author: OMKAR PATHAK
Created On: 17th August 2017

	
pygorithm.strings.pangram.is_pangram(sentence)

	A sentence containing every letter of the alphabet.

	Parameters:	sentence – Sentence to check

	Returns:	bool

	
pygorithm.strings.pangram.get_code()

	returns the code for the is_pangram function
:return: source code

Manacher’s Algorithm

	Functions and their uses

Author: OMKAR PATHAK
Created at: 27th August 2017

	
pygorithm.strings.manacher_algorithm.manacher(string)

	Computes length of the longest palindromic substring centered on each char
in the given string. The idea behind this algorithm is to reuse previously
computed values whenever possible (palindromes are symmetric).

Example (interleaved string):
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
s # a # b # c # q # q # q # q # q # q # x # y #
P 0 1 0 1 0 1 0 1 2 3 4 5 6 5 4 ?

^ ^ ^ ^

mirror center current right

We’re at index 15 wondering shall we compute (costly) or reuse. The mirror
value for 15 is 9 (center is in 12). P[mirror] = 3 which means a palindrome
of length 3 is centered at this index. A palindrome of same length would be
placed in index 15, if 15 + 3 <= 18 (right border of large parlindrome
centered in 12). This condition is satisfied, so we can reuse value from
index 9 and avoid costly computation.

	
pygorithm.strings.manacher_algorithm.get_code()

	returns the code for the manacher’s algorithm
:return: source code

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pygorithm	

 	
 	
 pygorithm.binary.ascii	

 	
 	
 pygorithm.binary.base10	

 	
 	
 pygorithm.binary.base16	

 	
 	
 pygorithm.binary.base2	

 	
 	
 pygorithm.data_structures.graph	

 	
 	
 pygorithm.data_structures.heap	

 	
 	
 pygorithm.data_structures.linked_list	

 	
 	
 pygorithm.data_structures.quadtree	

 	
 	
 pygorithm.data_structures.queue	

 	
 	
 pygorithm.data_structures.stack	

 	
 	
 pygorithm.data_structures.tree	

 	
 	
 pygorithm.data_structures.trie	

 	
 	
 pygorithm.dynamic_programming.binary_knapsack	

 	
 	
 pygorithm.dynamic_programming.lis	

 	
 	
 pygorithm.geometry.extrapolated_intersection	

 	
 	
 pygorithm.greedy_algorithm.activity_selection	

 	
 	
 pygorithm.greedy_algorithm.fractional_knapsack	

 	
 	
 pygorithm.strings.anagram	

 	
 	
 pygorithm.strings.isogram	

 	
 	
 pygorithm.strings.manacher_algorithm	

 	
 	
 pygorithm.strings.palindrome	

 	
 	
 pygorithm.strings.pangram	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | V
 | W
 | Y

_

 	
 	__add__() (pygorithm.geometry.vector2.Vector2 method)

 	__init__() (pygorithm.data_structures.quadtree.QuadTree method)

 	(pygorithm.data_structures.quadtree.QuadTreeEntity method)

 	(pygorithm.geometry.axisall.AxisAlignedLine method)

 	(pygorithm.geometry.line2.Line2 method)

 	(pygorithm.geometry.polygon2.Polygon2 method)

 	(pygorithm.geometry.rect2.Rect2 method)

 	(pygorithm.geometry.vector2.Vector2 method)

 	__mul__() (pygorithm.geometry.vector2.Vector2 method)

 	__repr__() (pygorithm.data_structures.quadtree.QuadTree method)

 	(pygorithm.data_structures.quadtree.QuadTreeEntity method)

 	(pygorithm.geometry.axisall.AxisAlignedLine method)

 	(pygorithm.geometry.line2.Line2 method)

 	(pygorithm.geometry.polygon2.Polygon2 method)

 	(pygorithm.geometry.rect2.Rect2 method)

 	(pygorithm.geometry.vector2.Vector2 method)

 	__rmul__() (pygorithm.geometry.vector2.Vector2 method)

 	
 	__str__() (pygorithm.data_structures.quadtree.QuadTree method)

 	(pygorithm.data_structures.quadtree.QuadTreeEntity method)

 	(pygorithm.geometry.axisall.AxisAlignedLine method)

 	(pygorithm.geometry.line2.Line2 method)

 	(pygorithm.geometry.polygon2.Polygon2 method)

 	(pygorithm.geometry.rect2.Rect2 method)

 	(pygorithm.geometry.vector2.Vector2 method)

 	__sub__() (pygorithm.geometry.vector2.Vector2 method)

 	__weakref__ (pygorithm.data_structures.quadtree.QuadTree attribute)

 	(pygorithm.data_structures.quadtree.QuadTreeEntity attribute)

 	(pygorithm.geometry.axisall.AxisAlignedLine attribute)

 	(pygorithm.geometry.line2.Line2 attribute)

 	(pygorithm.geometry.polygon2.Polygon2 attribute)

 	(pygorithm.geometry.rect2.Rect2 attribute)

 	(pygorithm.geometry.vector2.Vector2 attribute)

 	_find_intersection_poly_rect() (pygorithm.geometry.rect2.Rect2 class method)

 	_find_intersection_rect_poly() (pygorithm.geometry.rect2.Rect2 class method)

 	_find_intersection_rects() (pygorithm.geometry.rect2.Rect2 class method)

A

 	
 	activity_selection() (in module pygorithm.greedy_algorithm.activity_selection)

 	add_edge() (pygorithm.data_structures.graph.CheckCycleDirectedGraph method)

 	(pygorithm.data_structures.graph.CheckCycleUndirectedGraph method)

 	(pygorithm.data_structures.graph.Graph method)

 	(pygorithm.data_structures.graph.WeightedGraph method)

 	(pygorithm.data_structures.graph.WeightedUndirectedGraph method)

 	
 	are_parallel() (pygorithm.geometry.line2.Line2 static method)

 	area (pygorithm.geometry.polygon2.Polygon2 attribute)

 	(pygorithm.geometry.rect2.Rect2 attribute)

 	astar.BiDirectionalAStar.find_path() (built-in function)

 	astar.OneDirectionalAStar.find_path() (built-in function)

 	axis (pygorithm.geometry.line2.Line2 attribute)

 	AxisAlignedLine (class in pygorithm.geometry.axisall)

B

 	
 	binary_search.get_code() (built-in function)

 	binary_search.search() (in module pygorithm.searching)

 	binary_search.time_complexities() (built-in function)

 	BinarySearchTree (class in pygorithm.data_structures.tree)

 	BinaryTree (class in pygorithm.data_structures.tree)

 	breadth_first_search.get_code() (built-in function), [1]

 	breadth_first_search.search() (built-in function), [1]

 	breadth_first_search.time_complexities() (built-in function), [1]

 	
 	BSTNode (class in pygorithm.data_structures.tree)

 	bubble_sort.get_code() (built-in function)

 	bubble_sort.improved_sort() (built-in function)

 	bubble_sort.sort() (built-in function)

 	bubble_sort.time_complexities() (built-in function)

 	bucket_sort.get_code() (built-in function)

 	bucket_sort.sort() (built-in function)

 	bucket_sort.time_complexities() (built-in function)

 	build_word_list() (pygorithm.data_structures.trie.Trie method)

C

 	
 	calculate_avg_ents_per_leaf() (pygorithm.data_structures.quadtree.QuadTree method)

 	calculate_one_moving_and_one_stationary() (in module pygorithm.geometry.extrapolated_intersection)

 	calculate_one_moving_line_and_one_stationary_line() (in module pygorithm.geometry.extrapolated_intersection)

 	calculate_one_moving_many_stationary() (in module pygorithm.geometry.extrapolated_intersection)

 	calculate_one_moving_many_stationary_along_path() (in module pygorithm.geometry.extrapolated_intersection)

 	calculate_one_moving_many_stationary_distancelimit() (in module pygorithm.geometry.extrapolated_intersection)

 	calculate_one_moving_one_stationary_along_path() (in module pygorithm.geometry.extrapolated_intersection)

 	calculate_one_moving_one_stationary_distancelimit() (in module pygorithm.geometry.extrapolated_intersection)

 	calculate_one_moving_point_and_one_stationary_line() (in module pygorithm.geometry.extrapolated_intersection)

 	calculate_two_moving() (in module pygorithm.geometry.extrapolated_intersection)

 	calculate_weight_misplaced_ents() (pygorithm.data_structures.quadtree.QuadTree method)

 	calculate_y_intercept() (pygorithm.geometry.line2.Line2 method)

 	check_cycle() (pygorithm.data_structures.graph.CheckCycleDirectedGraph method)

 	(pygorithm.data_structures.graph.CheckCycleUndirectedGraph method)

 	
 	CheckCycleDirectedGraph (class in pygorithm.data_structures.graph)

 	CheckCycleUndirectedGraph (class in pygorithm.data_structures.graph)

 	contains_point() (pygorithm.geometry.axisall.AxisAlignedLine static method)

 	(pygorithm.geometry.line2.Line2 static method)

 	(pygorithm.geometry.polygon2.Polygon2 static method)

 	(pygorithm.geometry.rect2.Rect2 static method)

 	conversion.binary_to_decimal() (built-in function)

 	conversion.decimal_to_binary() (built-in function)

 	conversion.decimal_to_hex() (built-in function)

 	conversion.hex_to_decimal() (built-in function)

 	counting_sort.get_code() (built-in function)

 	counting_sort.sort() (built-in function)

 	counting_sort.time_complexities() (built-in function)

 	cross() (pygorithm.geometry.vector2.Vector2 method)

D

 	
 	delete() (pygorithm.data_structures.linked_list.DoublyLinkedList method)

 	(pygorithm.data_structures.linked_list.SinglyLinkedList method)

 	(pygorithm.data_structures.tree.BSTNode method)

 	(pygorithm.data_structures.tree.BinarySearchTree method)

 	delete_front() (pygorithm.data_structures.queue.Deque method)

 	delete_rear() (pygorithm.data_structures.queue.Deque method)

 	
 	delta (pygorithm.geometry.line2.Line2 attribute)

 	Deque (class in pygorithm.data_structures.queue)

 	dequeue() (pygorithm.data_structures.queue.Queue method)

 	dijkstra.Dijkstra.find_path() (built-in function)

 	dijkstra.get_code() (built-in function)

 	dot() (pygorithm.geometry.vector2.Vector2 method)

 	DoublyLinkedList (class in pygorithm.data_structures.linked_list)

E

 	
 	enqueue() (pygorithm.data_structures.queue.Queue method)

F

 	
 	factorial.factorial() (built-in function)

 	factorial.get_code() (built-in function)

 	favorite() (pygorithm.data_structures.heap.Heap method)

 	find() (pygorithm.data_structures.tree.BSTNode method)

 	find_entities_per_depth() (pygorithm.data_structures.quadtree.QuadTree method)

 	find_final_node() (pygorithm.data_structures.trie.Trie method)

 	find_intersection() (pygorithm.geometry.axisall.AxisAlignedLine static method)

 	(pygorithm.geometry.line2.Line2 static method)

 	(pygorithm.geometry.polygon2.Polygon2 static method)

 	(pygorithm.geometry.rect2.Rect2 class method)

 	
 	find_nodes_per_depth() (pygorithm.data_structures.quadtree.QuadTree method)

 	find_words() (pygorithm.data_structures.trie.Trie method)

 	from_regular() (pygorithm.geometry.polygon2.Polygon2 class method)

 	from_rotated() (pygorithm.geometry.polygon2.Polygon2 class method)

G

 	
 	get_code() (built-in function)

 	(in module pygorithm.dynamic_programming.binary_knapsack)

 	(in module pygorithm.dynamic_programming.lis)

 	(in module pygorithm.greedy_algorithm.activity_selection)

 	(in module pygorithm.greedy_algorithm.fractional_knapsack)

 	(in module pygorithm.strings.anagram)

 	(in module pygorithm.strings.isogram)

 	(in module pygorithm.strings.manacher_algorithm)

 	(in module pygorithm.strings.palindrome)

 	(in module pygorithm.strings.pangram)

 	(pygorithm.data_structures.graph.CheckCycleDirectedGraph static method)

 	(pygorithm.data_structures.graph.CheckCycleUndirectedGraph static method)

 	(pygorithm.data_structures.graph.Graph method)

 	(pygorithm.data_structures.graph.TopologicalSort method)

 	(pygorithm.data_structures.heap.Heap method)

 	(pygorithm.data_structures.linked_list.DoublyLinkedList static method)

 	(pygorithm.data_structures.linked_list.Node static method)

 	(pygorithm.data_structures.linked_list.SinglyLinkedList static method)

 	(pygorithm.data_structures.quadtree.QuadTree static method)

 	(pygorithm.data_structures.queue.Deque static method)

 	(pygorithm.data_structures.queue.Queue method)

 	(pygorithm.data_structures.stack.InfixToPostfix static method)

 	(pygorithm.data_structures.stack.Stack static method)

 	(pygorithm.data_structures.tree.BSTNode static method)

 	(pygorithm.data_structures.tree.BinarySearchTree static method)

 	(pygorithm.data_structures.tree.BinaryTree static method)

 	(pygorithm.data_structures.tree.Node static method)

 	
 	get_data() (pygorithm.data_structures.linked_list.DoublyLinkedList method)

 	(pygorithm.data_structures.linked_list.SinglyLinkedList method)

 	(pygorithm.data_structures.tree.BSTNode method)

 	(pygorithm.data_structures.tree.Node method)

 	get_edge_weight() (pygorithm.data_structures.graph.WeightedUndirectedGraph method)

 	get_left() (pygorithm.data_structures.tree.BSTNode method)

 	(pygorithm.data_structures.tree.Node method)

 	get_quadrant() (pygorithm.data_structures.quadtree.QuadTree method)

 	get_right() (pygorithm.data_structures.tree.BSTNode method)

 	(pygorithm.data_structures.tree.Node method)

 	get_sequence() (built-in function)

 	Graph (class in pygorithm.data_structures.graph)

 	gridify() (pygorithm.data_structures.graph.WeightedUndirectedGraph method)

H

 	
 	Heap (class in pygorithm.data_structures.heap)

 	heap_sort.get_code() (built-in function)

 	heap_sort.sort() (built-in function)

 	heap_sort.time_complexities() (built-in function)

 	
 	heapify_down() (pygorithm.data_structures.heap.Heap method)

 	heapify_up() (pygorithm.data_structures.heap.Heap method)

 	height (pygorithm.geometry.rect2.Rect2 attribute)

 	horizontal (pygorithm.geometry.line2.Line2 attribute)

I

 	
 	infix_to_postfix() (pygorithm.data_structures.stack.InfixToPostfix method)

 	InfixToPostfix (class in pygorithm.data_structures.stack)

 	inorder() (pygorithm.data_structures.tree.BinarySearchTree method)

 	(pygorithm.data_structures.tree.BSTNode method)

 	(pygorithm.data_structures.tree.BinaryTree method)

 	insert() (pygorithm.data_structures.heap.Heap method)

 	(pygorithm.data_structures.tree.BSTNode method)

 	(pygorithm.data_structures.tree.BinarySearchTree method)

 	(pygorithm.data_structures.trie.Trie method)

 	insert_after() (pygorithm.data_structures.linked_list.SinglyLinkedList method)

 	insert_and_think() (pygorithm.data_structures.quadtree.QuadTree method)

 	insert_at_end() (pygorithm.data_structures.linked_list.DoublyLinkedList method)

 	(pygorithm.data_structures.linked_list.SinglyLinkedList method)

 	insert_at_start() (pygorithm.data_structures.linked_list.DoublyLinkedList method)

 	(pygorithm.data_structures.linked_list.SinglyLinkedList method)

 	insert_front() (pygorithm.data_structures.queue.Deque method)

 	
 	insert_rear() (pygorithm.data_structures.queue.Deque method)

 	insertion_sort.get_code() (built-in function)

 	insertion_sort.sort() (built-in function)

 	insertion_sort.time_complexities() (built-in function)

 	interpolation_search.get_code() (built-in function)

 	interpolation_search.search() (in module pygorithm.searching)

 	interpolation_search.time_complexities() (built-in function)

 	intersects() (pygorithm.geometry.axisall.AxisAlignedLine static method)

 	is_anagram() (in module pygorithm.strings.anagram)

 	is_empty() (pygorithm.data_structures.queue.Deque method)

 	(pygorithm.data_structures.queue.Queue method)

 	(pygorithm.data_structures.stack.Stack method)

 	is_full() (pygorithm.data_structures.queue.Deque method)

 	is_isogram() (in module pygorithm.strings.isogram)

 	is_palindrome() (in module pygorithm.strings.palindrome)

 	is_pangram() (in module pygorithm.strings.pangram)

K

 	
 	knapsack() (in module pygorithm.dynamic_programming.binary_knapsack)

 	(in module pygorithm.greedy_algorithm.fractional_knapsack)

 	
 	kruskal_code() (pygorithm.data_structures.graph.WeightedGraph class method)

 	kruskal_mst() (pygorithm.data_structures.graph.WeightedGraph method)

 	kruskal_time_complexity() (pygorithm.data_structures.graph.WeightedGraph static method)

L

 	
 	lcm.get_code() (built-in function)

 	lcm.lcm() (built-in function)

 	left_child_idx() (pygorithm.data_structures.heap.Heap static method)

 	Line2 (class in pygorithm.geometry.line2)

 	
 	linear_search.get_code() (built-in function)

 	linear_search.search() (built-in function)

 	linear_search.time_complexities() (built-in function)

 	longest_increasing_subsequence() (in module pygorithm.dynamic_programming.lis)

M

 	
 	magnitude (pygorithm.geometry.line2.Line2 attribute)

 	magnitude() (pygorithm.geometry.vector2.Vector2 method)

 	magnitude_squared (pygorithm.geometry.line2.Line2 attribute)

 	magnitude_squared() (pygorithm.geometry.vector2.Vector2 method)

 	manacher() (in module pygorithm.strings.manacher_algorithm)

 	max_x (pygorithm.geometry.line2.Line2 attribute)

 	
 	max_y (pygorithm.geometry.line2.Line2 attribute)

 	merge_sort.get_code() (built-in function)

 	merge_sort.sort() (built-in function)

 	merge_sort.time_complexities() (built-in function)

 	min_val_bst_node() (pygorithm.data_structures.tree.BSTNode static method)

 	min_x (pygorithm.geometry.line2.Line2 attribute)

 	min_y (pygorithm.geometry.line2.Line2 attribute)

N

 	
 	Node (class in pygorithm.data_structures.linked_list)

 	(class in pygorithm.data_structures.tree)

 	
 	normal (pygorithm.geometry.line2.Line2 attribute)

 	normalize() (pygorithm.geometry.vector2.Vector2 method)

P

 	
 	parent_idx() (pygorithm.data_structures.heap.Heap static method)

 	peek() (pygorithm.data_structures.stack.Stack method)

 	polygon (pygorithm.geometry.rect2.Rect2 attribute)

 	Polygon2 (class in pygorithm.geometry.polygon2)

 	pop() (pygorithm.data_structures.heap.Heap method)

 	(pygorithm.data_structures.stack.Stack method)

 	postorder() (pygorithm.data_structures.tree.BinarySearchTree method)

 	(pygorithm.data_structures.tree.BSTNode method)

 	(pygorithm.data_structures.tree.BinaryTree method)

 	preorder() (pygorithm.data_structures.tree.BinarySearchTree method)

 	(pygorithm.data_structures.tree.BSTNode method)

 	(pygorithm.data_structures.tree.BinaryTree method)

 	print_graph() (pygorithm.data_structures.graph.CheckCycleDirectedGraph method)

 	(pygorithm.data_structures.graph.CheckCycleUndirectedGraph method)

 	(pygorithm.data_structures.graph.Graph method)

 	(pygorithm.data_structures.graph.WeightedGraph method)

 	project_onto_axis() (pygorithm.geometry.polygon2.Polygon2 static method)

 	(pygorithm.geometry.rect2.Rect2 static method)

 	push() (pygorithm.data_structures.stack.Stack method)

 	pygorithm.binary.ascii (module)

 	
 	pygorithm.binary.base10 (module)

 	pygorithm.binary.base16 (module)

 	pygorithm.binary.base2 (module)

 	pygorithm.data_structures.graph (module)

 	pygorithm.data_structures.heap (module)

 	pygorithm.data_structures.linked_list (module)

 	pygorithm.data_structures.quadtree (module)

 	pygorithm.data_structures.queue (module)

 	pygorithm.data_structures.stack (module)

 	pygorithm.data_structures.tree (module)

 	pygorithm.data_structures.trie (module)

 	pygorithm.dynamic_programming.binary_knapsack (module)

 	pygorithm.dynamic_programming.lis (module)

 	pygorithm.geometry.extrapolated_intersection (module)

 	pygorithm.greedy_algorithm.activity_selection (module)

 	pygorithm.greedy_algorithm.fractional_knapsack (module)

 	pygorithm.strings.anagram (module)

 	pygorithm.strings.isogram (module)

 	pygorithm.strings.manacher_algorithm (module)

 	pygorithm.strings.palindrome (module)

 	pygorithm.strings.pangram (module)

Q

 	
 	QuadTree (class in pygorithm.data_structures.quadtree)

 	QuadTreeEntity (class in pygorithm.data_structures.quadtree)

 	Queue (class in pygorithm.data_structures.queue)

 	quick_select.get_code() (built-in function)

 	
 	quick_select.search() (built-in function)

 	quick_select.time_complexities() (built-in function)

 	quick_sort.get_code() (built-in function)

 	quick_sort.sort() (built-in function)

 	quick_sort.time_complexities() (built-in function)

R

 	
 	Rect2 (class in pygorithm.geometry.rect2)

 	remove_edge() (pygorithm.data_structures.graph.WeightedUndirectedGraph method)

 	
 	retrieve_collidables() (pygorithm.data_structures.quadtree.QuadTree method)

 	right_child_idx() (pygorithm.data_structures.heap.Heap static method)

 	rotate() (pygorithm.geometry.vector2.Vector2 method)

S

 	
 	search() (pygorithm.data_structures.trie.Trie method)

 	selection_sort.get_code() (built-in function)

 	selection_sort.sort() (built-in function)

 	selection_sort.time_complexities() (built-in function)

 	set_data() (pygorithm.data_structures.tree.BSTNode method)

 	(pygorithm.data_structures.tree.Node method)

 	set_left() (pygorithm.data_structures.tree.BSTNode method)

 	(pygorithm.data_structures.tree.Node method)

 	set_right() (pygorithm.data_structures.tree.BSTNode method)

 	(pygorithm.data_structures.tree.Node method)

 	shell_sort.get_code() (built-in function)

 	
 	shell_sort.sort() (built-in function)

 	shell_sort.time_complexities() (built-in function)

 	sieve_of_eratostenes.get_code() (built-in function)

 	sieve_of_eratostenes.sieve_of_eratostenes() (built-in function)

 	SinglyLinkedList (class in pygorithm.data_structures.linked_list)

 	size() (pygorithm.data_structures.queue.Queue method)

 	(pygorithm.data_structures.stack.Stack method)

 	slope (pygorithm.geometry.line2.Line2 attribute)

 	split() (pygorithm.data_structures.quadtree.QuadTree method)

 	Stack (class in pygorithm.data_structures.stack)

 	sum_entities() (pygorithm.data_structures.quadtree.QuadTree method)

T

 	
 	think() (pygorithm.data_structures.quadtree.QuadTree method)

 	to_ascii() (in module pygorithm.binary.base16)

 	(in module pygorithm.binary.base2)

 	to_base10() (in module pygorithm.binary.base16)

 	(in module pygorithm.binary.base2)

 	to_base16() (in module pygorithm.binary.ascii)

 	(in module pygorithm.binary.base10)

 	(in module pygorithm.binary.base2)

 	
 	to_base2() (in module pygorithm.binary.ascii)

 	(in module pygorithm.binary.base10)

 	(in module pygorithm.binary.base16)

 	topological_sort() (pygorithm.data_structures.graph.TopologicalSort method)

 	TopologicalSort (class in pygorithm.data_structures.graph)

 	Trie (class in pygorithm.data_structures.trie)

V

 	
 	Vector2 (class in pygorithm.geometry.vector2)

 	
 	vertical (pygorithm.geometry.line2.Line2 attribute)

W

 	
 	WeightedGraph (class in pygorithm.data_structures.graph)

 	
 	WeightedUndirectedGraph (class in pygorithm.data_structures.graph)

 	width (pygorithm.geometry.rect2.Rect2 attribute)

Y

 	
 	y_intercept (pygorithm.geometry.line2.Line2 attribute)

 _static/up.png

_static/minus.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Pygorithm

 		Binary Conversions

 		Features

 		ASCII Conversions

 		Base2 Coversions

 		Base10 Coversions

 		Base16 Coversions

 		Data Structures

 		Quick Start Guide

 		Features

 		Stack

 		Stack

 		Infix to Postfix

 		Queue

 		Queue

 		Deque

 		Linked Lists

 		Node

 		Singly Linked List

 		Doubly Linked List

 		Tree

 		Node

 		Binary Tree

 		Binary Search Tree Node

 		Binary Search Tree

 		Graph

 		Graph

 		Weighted Graph

 		Weighted Undirected Graph

 		Topological Sort

 		Check Cycle in Directed Graph

 		Check Cycle in Undirected Graph

 		Heap

 		Heap

 		Trie

 		Trie

 		QuadTree

 		QuadTreeEntity

 		QuadTree

 		Dynamic Programming

 		Features

 		Binary (0/1) Knapsack

 		Longest Increasing Subsequence

 		Fibonacci

 		Quick Start Guide

 		Features

 		Implementations API

 		Geometry

 		Quick Start Guide

 		Features

 		Vector2

 		Line2

 		Axis-Aligned Line

 		Concave Polygon

 		Axis-Aligned Rectangle

 		Extrapolated Intersection

 		Greedy Algorithms

 		Features

 		Activity Selection Problem

 		Fractional Knapsack

 		Math

 		Quick Start Guide

 		Features

 		LCM

 		Sieve of Eratostenes

 		Factorial

 		Conversion

 		Path Finding Algorithms

 		Quick Start Guide

 		Features

 		Dijkstra

 		Unidirectional AStar

 		BiDirectional AStar

 		Searching

 		Quick Start Guide

 		Features

 		Binary Search

 		Linear Search

 		Breadth First Search

 		Depth First Search

 		Quick Select Search

 		Interpolation Search

 		Sorting

 		Quick Start Guide

 		Features

 		Bubble Sort

 		Bucket Sort

 		Counting Sort

 		Heap Sort

 		Insertion Sort

 		Merge Sort

 		Quick Sort

 		Selection Sort

 		Shell Sort

 		Strings

 		Features

 		Anagram

 		Isogram

 		Palindrome

 		Pangram

 		Manacher's Algorithm

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

